
    fTh*                     l    S r SSKJr  SSKJr  SSKJr  \R                  " \5      r	 " S S\5      r
S/rg)zStarcoder2 model configuration   )PretrainedConfig)rope_config_validation)loggingc                      ^  \ rS rSrSrSrS/rSSSSSSS.rS/S	/4S
S/S
/4S
/S
/4S.r                    SU 4S jjr	Sr
U =r$ )Starcoder2Config   a  
This is the configuration class to store the configuration of a [`Starcoder2Model`]. It is used to instantiate a
Starcoder2 model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the [bigcode/starcoder2-7b](https://huggingface.co/bigcode/starcoder2-7b) model.


Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.


Args:
    vocab_size (`int`, *optional*, defaults to 49152):
        Vocabulary size of the Starcoder2 model. Defines the number of different tokens that can be represented by the
        `inputs_ids` passed when calling [`Starcoder2Model`]
    hidden_size (`int`, *optional*, defaults to 3072):
        Dimension of the hidden representations.
    intermediate_size (`int`, *optional*, defaults to 12288):
        Dimension of the MLP representations.
    num_hidden_layers (`int`, *optional*, defaults to 30):
        Number of hidden layers in the Transformer encoder.
    num_attention_heads (`int`, *optional*, defaults to 24):
        Number of attention heads for each attention layer in the Transformer encoder.
    num_key_value_heads (`int`, *optional*, defaults to 2):
        This is the number of key_value heads that should be used to implement Grouped Query Attention. If
        `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
        `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
        converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
        by meanpooling all the original heads within that group. For more details checkout [this
        paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `8`.
    hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`):
        The non-linear activation function (function or string) in the decoder.
    max_position_embeddings (`int`, *optional*, defaults to 4096):
        The maximum sequence length that this model might ever be used with. Starcoder2's sliding window attention
        allows sequence of up to 4096*32 tokens.
    initializer_range (`float`, *optional*, defaults to 0.02):
        The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
    norm_epsilon (`float`, *optional*, defaults to 1e-05):
        Epsilon value for the layer norm
    use_cache (`bool`, *optional*, defaults to `True`):
        Whether or not the model should return the last key/values attentions (not used by all models). Only
        relevant if `config.is_decoder=True`.
    bos_token_id (`int`, *optional*, defaults to 50256):
        The id of the "beginning-of-sequence" token.
    eos_token_id (`int`, *optional*, defaults to 50256):
        The id of the "end-of-sequence" token.
    rope_theta (`float`, *optional*, defaults to 10000.0):
        The base period of the RoPE embeddings.
    rope_scaling (`Dict`, *optional*):
        Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
        and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
        accordingly.
        Expected contents:
            `rope_type` (`str`):
                The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
                'llama3'], with 'default' being the original RoPE implementation.
            `factor` (`float`, *optional*):
                Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
                most scaling types, a `factor` of x will enable the model to handle sequences of length x *
                original maximum pre-trained length.
            `original_max_position_embeddings` (`int`, *optional*):
                Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
                pretraining.
            `attention_factor` (`float`, *optional*):
                Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
                computation. If unspecified, it defaults to value recommended by the implementation, using the
                `factor` field to infer the suggested value.
            `beta_fast` (`float`, *optional*):
                Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
                ramp function. If unspecified, it defaults to 32.
            `beta_slow` (`float`, *optional*):
                Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
                ramp function. If unspecified, it defaults to 1.
            `short_factor` (`List[float]`, *optional*):
                Only used with 'longrope'. The scaling factor to be applied to short contexts (<
                `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
                size divided by the number of attention heads divided by 2
            `long_factor` (`List[float]`, *optional*):
                Only used with 'longrope'. The scaling factor to be applied to long contexts (<
                `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
                size divided by the number of attention heads divided by 2
            `low_freq_factor` (`float`, *optional*):
                Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
            `high_freq_factor` (`float`, *optional*):
                Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
    sliding_window (`int`, *optional*):
        Sliding window attention window size. If not specified, will default to `None` (no sliding window).
    attention_dropout (`float`, *optional*, defaults to 0.0):
        The dropout ratio for the attention probabilities.
    residual_dropout (`float`, *optional*, defaults to 0.0):
        Residual connection dropout value.
    embedding_dropout (`float`, *optional*, defaults to 0.0):
        Embedding dropout.
    use_bias (`bool`, *optional*, defaults to `True`):
        Whether to use bias term on linear layers of the model.


```python
>>> from transformers import Starcoder2Model, Starcoder2Config

>>> # Initializing a Starcoder2 7B style configuration
>>> configuration = Starcoder2Config()

>>> # Initializing a model from the Starcoder2 7B style configuration
>>> model = Starcoder2Model(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config
```
starcoder2past_key_valuescolwiserowwise)zlayers.*.self_attn.q_projzlayers.*.self_attn.k_projzlayers.*.self_attn.v_projzlayers.*.self_attn.o_projzlayers.*.mlp.c_fczlayers.*.mlp.c_proj	input_idsinputs_embedshidden_statesattention_mask)embed_tokenslayersnormc                   > Xl         Xl        X l        X0l        X@l        XPl        UU l        UU l        X`l        Xpl	        Xl
        Xl        Xl        Xl        Xl        UU l        UU l        UU l        U R                  b,  SU R                  ;   a  U R                  S   U R                  S'   [%        U 5        [&        TU ]P  " SUUS.UD6  g )Ntype	rope_type)bos_token_ideos_token_id )
vocab_sizemax_position_embeddingshidden_sizeintermediate_sizenum_hidden_layersnum_attention_headssliding_windowuse_biasnum_key_value_heads
hidden_actinitializer_rangenorm_epsilon	use_cache
rope_thetarope_scalingattention_dropoutresidual_dropoutembedding_dropoutr   super__init__)selfr   r   r   r   r   r"   r#   r   r$   r%   r&   r   r   r'   r(   r    r)   r*   r+   r!   kwargs	__class__s                         o/var/www/auris/envauris/lib/python3.13/site-packages/transformers/models/starcoder2/configuration_starcoder2.pyr-   Starcoder2Config.__init__   s    0 %'>$&!2!2#6 , #6 $!2("$(!2 0!2 (Vt7H7H-H-1->->v-FDk*t$ 	
%%	
 	
    )r)   r+   r#   r   r$   r   r   r%   r   r   r"   r*   r(   r'   r    r!   r&   r   )i   i   i 0           gelu_pytorch_tanhi   gVy?gh㈵>TP  r8   g     @NN        r9   r9   T)__name__
__module____qualname____firstlineno____doc__
model_typekeys_to_ignore_at_inferencebase_model_tp_planbase_model_pp_planr-   __static_attributes____classcell__)r0   s   @r1   r   r      s    kZ J#4"5 &/%.%.%.&( &(9:#%568IJ!"_$56 & $"+4
 4
r3   r   N)r>   configuration_utilsr   modeling_rope_utilsr   utilsr   
get_loggerr:   loggerr   __all__r   r3   r1   <module>rK      s?    % 3 9  
		H	%s
' s
l 
r3   