
    fThU*                     l    S r SSKJr  SSKJr  SSKJr  \R                  " \5      r	 " S S\5      r
S/rg)zStableLM model configuration   )PretrainedConfig)rope_config_validation)loggingc                   f   ^  \ rS rSrSrSrS/r                      SU 4S jjrSrU =r	$ )StableLmConfig   ai  
This is the configuration class to store the configuration of a [`~StableLmModel`].
It is used to instantiate an StableLM model according to the specified arguments, defining the model
architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of
the StableLM [stabilityai/stablelm-3b-4e1t](https://huggingface.co/stabilityai/stablelm-3b-4e1t) architecture.

Configuration objects inherit from  [`PretrainedConfig`] and can be used
to control the model outputs. Read the documentation from  [`PretrainedConfig`]
for more information.


Args:
    vocab_size (`int`, *optional*, defaults to 50304):
        Vocabulary size of the StableLM model. Defines the number of different tokens that
        can be represented by the `inputs_ids` passed when calling [`StableLmModel`].
    intermediate_size (`int`, *optional*, defaults to 6912):
        Dimension of the MLP representations.
    hidden_size (`int`, *optional*, defaults to 2560):
        Number of hidden layers in the Transformer decoder.
    num_hidden_layers (`int`, *optional*, defaults to 32):
        Number of hidden layers in the Transformer decoder.
    num_attention_heads (`int`, *optional*, defaults to 32):
        Number of attention heads for each attention layer in the Transformer encoder.
    num_key_value_heads (`int`, *optional*, defaults to 32):
        This is the number of key_value heads that should be used to implement Grouped Query Attention. If
        `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
        `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
        converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
        by meanpooling all the original heads within that group. For more details checkout [this
        paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
        `num_attention_heads`.
    hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
        The non-linear activation function (function or string).
    max_position_embeddings (`int`, *optional*, defaults to 4096):
        The maximum sequence length that this model might ever be used with.
        Typically set this to something large just in case (e.g., 512 or 1024 or 2048).
    initializer_range (`float`, *optional*, defaults to 0.02):
        The standard deviation of the truncated_normal_initializer for initializing
         all weight matrices.
    layer_norm_eps (`float`, *optional*, defaults to 1e-05):
        The epsilon used by the normalization layers.
    use_cache (`bool`, *optional*, defaults to `True`):
        Whether or not the model should return the last key/values attentions
        (not used by all models). Only relevant if `config.is_decoder=True`.
    tie_word_embeddings (`bool`, *optional*, defaults to `False`):
        Whether the model's input and output word embeddings should be tied.
    rope_theta (`float`, *optional*, defaults to `10000.0`):
        The base period of the RoPE embeddings.
    rope_scaling (`Dict`, *optional*):
        Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
        and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
        accordingly.
        Expected contents:
            `rope_type` (`str`):
                The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
                'llama3'], with 'default' being the original RoPE implementation.
            `factor` (`float`, *optional*):
                Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
                most scaling types, a `factor` of x will enable the model to handle sequences of length x *
                original maximum pre-trained length.
            `original_max_position_embeddings` (`int`, *optional*):
                Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
                pretraining.
            `attention_factor` (`float`, *optional*):
                Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
                computation. If unspecified, it defaults to value recommended by the implementation, using the
                `factor` field to infer the suggested value.
            `beta_fast` (`float`, *optional*):
                Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
                ramp function. If unspecified, it defaults to 32.
            `beta_slow` (`float`, *optional*):
                Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
                ramp function. If unspecified, it defaults to 1.
            `short_factor` (`List[float]`, *optional*):
                Only used with 'longrope'. The scaling factor to be applied to short contexts (<
                `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
                size divided by the number of attention heads divided by 2
            `long_factor` (`List[float]`, *optional*):
                Only used with 'longrope'. The scaling factor to be applied to long contexts (<
                `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
                size divided by the number of attention heads divided by 2
            `low_freq_factor` (`float`, *optional*):
                Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
            `high_freq_factor` (`float`, *optional*):
                Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
    use_qkv_bias (`bool`, *optional*, defaults to `False`):
        Whether or not the model should use bias for qkv layers.
    qk_layernorm (`bool`, *optional*, defaults to `False`):
        Whether or not to normalize, per head, the Queries and Keys after projecting the hidden states.
    use_parallel_residual (`bool`, *optional*, defaults to `False`):
        Whether to use a "parallel" formulation in each Transformer layer, which can provide a slight training
        speedup at large scales.
    hidden_dropout (`float`, *optional*, defaults to 0.0):
        The dropout ratio after applying the MLP to the hidden states.
    attention_dropout (`float`, *optional*, defaults to 0.0):
        The dropout ratio for the attention probabilities.
    partial_rotary_factor (`float`, *optional*, defaults to 0.25):
        Percentage of the query and keys which will have rotary embedding.
    bos_token_id (int, *optional*, defaults to 0):
        The id of the `BOS` token in the vocabulary.
    eos_token_id (int, *optional*, defaults to 0):
        The id of the `EOS` token in the vocabulary.

Example:

```python
>>> from transformers import StableLmModel, StableLmConfig

>>> # Initializing a StableLM stablelm-3b style configuration
>>> configuration = StableLmConfig()
```stablelmpast_key_valuesc                   > Xl         Xl        X0l        X l        X@l        XPl        X`l        Xpl        Xl        Xl	        Xl
        Xl        Xl        Xl        UU l        UU l        UU l        UU l        UU l        U R                  b,  SU R                  ;   a  U R                  S   U R                  S'   ['        U 5        [(        TU ]T  " SUUUS.UD6  g )Ntype	rope_type)bos_token_ideos_token_idtie_word_embeddings )
vocab_sizemax_position_embeddingshidden_sizeintermediate_sizenum_hidden_layersnum_attention_headsnum_key_value_heads
hidden_actinitializer_rangelayer_norm_eps	use_cache
rope_thetarope_scalinguse_qkv_biasqk_layernormuse_parallel_residualhidden_dropoutattention_dropoutpartial_rotary_factorr   super__init__)selfr   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r    r!   r"   r#   r$   r   r   kwargs	__class__s                           k/var/www/auris/envauris/lib/python3.13/site-packages/transformers/models/stablelm/configuration_stablelm.pyr&   StableLmConfig.__init__   s    4 %'>$&!2!2#6 #6 $!2,"$(((%:",!2%:" (Vt7H7H-H-1->->v-FDk*t$ 	
%% 3	
 		
    )r#   r   r"   r   r   r   r   r   r   r   r   r$   r    r   r   r   r!   r   r   )i  i   i 
      r-   r-   silui   g{Gz?gh㈵>TFi'  NFFF        r/   g      ?    r0   )
__name__
__module____qualname____firstlineno____doc__
model_typekeys_to_ignore_at_inferencer&   __static_attributes____classcell__)r)   s   @r*   r   r      sh    n` J#4"5  $!#"/:
 :
r,   r   N)r5   configuration_utilsr   modeling_rope_utilsr   utilsr   
get_loggerr1   loggerr   __all__r   r,   r*   <module>r@      s?    # 3 9  
		H	%n
% n
b 
r,   