
    fTh                     `    S r SSKJr  SSKJr  \R
                  " \5      r " S S\5      rS/r	g)zSplinter model configuration   )PretrainedConfig)loggingc                   R   ^  \ rS rSrSrSr               SU 4S jjrSrU =r$ )SplinterConfig   a  
This is the configuration class to store the configuration of a [`SplinterModel`]. It is used to instantiate an
Splinter model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the Splinter
[tau/splinter-base](https://huggingface.co/tau/splinter-base) architecture.

Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.


Args:
    vocab_size (`int`, *optional*, defaults to 30522):
        Vocabulary size of the Splinter model. Defines the number of different tokens that can be represented by
        the `inputs_ids` passed when calling [`SplinterModel`].
    hidden_size (`int`, *optional*, defaults to 768):
        Dimension of the encoder layers and the pooler layer.
    num_hidden_layers (`int`, *optional*, defaults to 12):
        Number of hidden layers in the Transformer encoder.
    num_attention_heads (`int`, *optional*, defaults to 12):
        Number of attention heads for each attention layer in the Transformer encoder.
    intermediate_size (`int`, *optional*, defaults to 3072):
        Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
    hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
        The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
        `"relu"`, `"selu"` and `"gelu_new"` are supported.
    hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
        The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
    attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
        The dropout ratio for the attention probabilities.
    max_position_embeddings (`int`, *optional*, defaults to 512):
        The maximum sequence length that this model might ever be used with. Typically set this to something large
        just in case (e.g., 512 or 1024 or 2048).
    type_vocab_size (`int`, *optional*, defaults to 2):
        The vocabulary size of the `token_type_ids` passed when calling [`SplinterModel`].
    initializer_range (`float`, *optional*, defaults to 0.02):
        The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
    layer_norm_eps (`float`, *optional*, defaults to 1e-12):
        The epsilon used by the layer normalization layers.
    use_cache (`bool`, *optional*, defaults to `True`):
        Whether or not the model should return the last key/values attentions (not used by all models). Only
        relevant if `config.is_decoder=True`.
    question_token_id (`int`, *optional*, defaults to 104):
        The id of the `[QUESTION]` token.

Example:

```python
>>> from transformers import SplinterModel, SplinterConfig

>>> # Initializing a Splinter tau/splinter-base style configuration
>>> configuration = SplinterConfig()

>>> # Initializing a model from the tau/splinter-base style configuration
>>> model = SplinterModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config
```splinterc                    > [         TU ]  " SSU0UD6  Xl        Xl        X l        X0l        X@l        XPl        X`l        Xpl	        Xl
        Xl        Xl        Xl        Xl        Xl        g )Npad_token_id )super__init__
vocab_sizemax_position_embeddingshidden_sizenum_hidden_layersnum_attention_headsintermediate_size
hidden_acthidden_dropout_probattention_probs_dropout_probinitializer_rangetype_vocab_sizelayer_norm_eps	use_cachequestion_token_id)selfr   r   r   r   r   r   r   r   r   r   r   r   r   r
   r   kwargs	__class__s                    k/var/www/auris/envauris/lib/python3.13/site-packages/transformers/models/splinter/configuration_splinter.pyr   SplinterConfig.__init__V   sk    & 	=l=f=$'>$&!2#6 !2$#6 ,H)!2.,"!2    )r   r   r   r   r   r   r   r   r   r   r   r   r   r   )i:w  i      r"   i   gelu皙?r$   i      g{Gz?g-q=T    h   )	__name__
__module____qualname____firstlineno____doc__
model_typer   __static_attributes____classcell__)r   s   @r   r   r      sI    9v J %( #!"3 "3r!   r   N)
r,   configuration_utilsr   utilsr   
get_loggerr(   loggerr   __all__r   r!   r   <module>r5      s<    # 3  
		H	%`3% `3F 
r!   