
    fTh7                     p    S r SSKrSSKrSSKJr  SSKJr  \R                  " \5      r	 " S S\5      r
S/rg)zSEW model configuration    N   )PretrainedConfig)loggingc                      ^  \ rS rSrSrSr                                     SU 4S jjr\S 5       rSr	U =r
$ )	SEWConfig   a"  
This is the configuration class to store the configuration of a [`SEWModel`]. It is used to instantiate a SEW model
according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the SEW
[asapp/sew-tiny-100k](https://huggingface.co/asapp/sew-tiny-100k) architecture.

Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.


Args:
    vocab_size (`int`, *optional*, defaults to 32):
        Vocabulary size of the SEW model. Defines the number of different tokens that can be represented by the
        `inputs_ids` passed when calling [`SEW`].
    hidden_size (`int`, *optional*, defaults to 768):
        Dimensionality of the encoder layers and the pooler layer.
    num_hidden_layers (`int`, *optional*, defaults to 12):
        Number of hidden layers in the Transformer encoder.
    num_attention_heads (`int`, *optional*, defaults to 12):
        Number of attention heads for each attention layer in the Transformer encoder.
    intermediate_size (`int`, *optional*, defaults to 3072):
        Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
    squeeze_factor (`int`, *optional*, defaults to 2):
        Sequence length downsampling factor after the encoder and upsampling factor after the transformer.
    hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
        The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
        `"relu"`, `"selu"` and `"gelu_new"` are supported.
    hidden_dropout (`float`, *optional*, defaults to 0.1):
        The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
    activation_dropout (`float`, *optional*, defaults to 0.1):
        The dropout ratio for activations inside the fully connected layer.
    attention_dropout (`float`, *optional*, defaults to 0.1):
        The dropout ratio for the attention probabilities.
    final_dropout (`float`, *optional*, defaults to 0.1):
        The dropout probability for the final projection layer of [`SEWForCTC`].
    layerdrop (`float`, *optional*, defaults to 0.1):
        The LayerDrop probability. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more
        details.
    initializer_range (`float`, *optional*, defaults to 0.02):
        The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
    layer_norm_eps (`float`, *optional*, defaults to 1e-12):
        The epsilon used by the layer normalization layers.
    feat_extract_norm (`str`, *optional*, defaults to `"group"`):
        The norm to be applied to 1D convolutional layers in feature encoder. One of `"group"` for group
        normalization of only the first 1D convolutional layer or `"layer"` for layer normalization of all 1D
        convolutional layers.
    feat_proj_dropout (`float`, *optional*, defaults to 0.0):
        The dropout probability for output of the feature encoder.
    feat_extract_activation (`str, `optional`, defaults to `"gelu"`):
        The non-linear activation function (function or string) in the 1D convolutional layers of the feature
        extractor. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported.
    conv_dim (`Tuple[int]` or `List[int]`, *optional*, defaults to `(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512)`):
        A tuple of integers defining the number of input and output channels of each 1D convolutional layer in the
        feature encoder. The length of *conv_dim* defines the number of 1D convolutional layers.
    conv_stride (`Tuple[int]` or `List[int]`, *optional*, defaults to `(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1)`):
        A tuple of integers defining the stride of each 1D convolutional layer in the feature encoder. The length
        of *conv_stride* defines the number of convolutional layers and has to match the length of *conv_dim*.
    conv_kernel (`Tuple[int]` or `List[int]`, *optional*, defaults to `(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1)`):
        A tuple of integers defining the kernel size of each 1D convolutional layer in the feature encoder. The
        length of *conv_kernel* defines the number of convolutional layers and has to match the length of
        *conv_dim*.
    conv_bias (`bool`, *optional*, defaults to `False`):
        Whether the 1D convolutional layers have a bias.
    num_conv_pos_embeddings (`int`, *optional*, defaults to 128):
        Number of convolutional positional embeddings. Defines the kernel size of 1D convolutional positional
        embeddings layer.
    num_conv_pos_embedding_groups (`int`, *optional*, defaults to 16):
        Number of groups of 1D convolutional positional embeddings layer.
    apply_spec_augment (`bool`, *optional*, defaults to `True`):
        Whether to apply *SpecAugment* data augmentation to the outputs of the feature encoder. For reference see
        [SpecAugment: A Simple Data Augmentation Method for Automatic Speech
        Recognition](https://arxiv.org/abs/1904.08779).
    mask_time_prob (`float`, *optional*, defaults to 0.05):
        Percentage (between 0 and 1) of all feature vectors along the time axis which will be masked. The masking
        procedure generates ''mask_time_prob*len(time_axis)/mask_time_length'' independent masks over the axis. If
        reasoning from the probability of each feature vector to be chosen as the start of the vector span to be
        masked, *mask_time_prob* should be `prob_vector_start*mask_time_length`. Note that overlap may decrease the
        actual percentage of masked vectors. This is only relevant if `apply_spec_augment is True`.
    mask_time_length (`int`, *optional*, defaults to 10):
        Length of vector span along the time axis.
    mask_time_min_masks (`int`, *optional*, defaults to 2),:
        The minimum number of masks of length `mask_feature_length` generated along the time axis, each time step,
        irrespectively of `mask_feature_prob`. Only relevant if ''mask_time_prob*len(time_axis)/mask_time_length <
        mask_time_min_masks''
    mask_feature_prob (`float`, *optional*, defaults to 0.0):
        Percentage (between 0 and 1) of all feature vectors along the feature axis which will be masked. The
        masking procedure generates ''mask_feature_prob*len(feature_axis)/mask_time_length'' independent masks over
        the axis. If reasoning from the probability of each feature vector to be chosen as the start of the vector
        span to be masked, *mask_feature_prob* should be `prob_vector_start*mask_feature_length`. Note that overlap
        may decrease the actual percentage of masked vectors. This is only relevant if `apply_spec_augment is
        True`.
    mask_feature_length (`int`, *optional*, defaults to 10):
        Length of vector span along the feature axis.
    mask_feature_min_masks (`int`, *optional*, defaults to 0),:
        The minimum number of masks of length `mask_feature_length` generated along the feature axis, each time
        step, irrespectively of `mask_feature_prob`. Only relevant if
        ''mask_feature_prob*len(feature_axis)/mask_feature_length < mask_feature_min_masks''
    ctc_loss_reduction (`str`, *optional*, defaults to `"sum"`):
        Specifies the reduction to apply to the output of `torch.nn.CTCLoss`. Only relevant when training an
        instance of [`SEWForCTC`].
    ctc_zero_infinity (`bool`, *optional*, defaults to `False`):
        Whether to zero infinite losses and the associated gradients of `torch.nn.CTCLoss`. Infinite losses mainly
        occur when the inputs are too short to be aligned to the targets. Only relevant when training an instance
        of [`SEWForCTC`].
    use_weighted_layer_sum (`bool`, *optional*, defaults to `False`):
        Whether to use a weighted average of layer outputs with learned weights. Only relevant when using an
        instance of [`Wav2Vec2ForSequenceClassification`].
    classifier_proj_size (`int`, *optional*, defaults to 256):
        Dimensionality of the projection before token mean-pooling for classification.

Example:

```python
>>> from transformers import SEWConfig, SEWModel

>>> # Initializing a SEW asapp/sew-tiny-100k style configuration
>>> configuration = SEWConfig()

>>> # Initializing a model (with random weights) from the asapp/sew-tiny-100k style configuration
>>> model = SEWModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config
```sewc&           
        > [         T'U ]  " S0 U&DU#U$U%S.D6  X l        UU l        UU l        [        U5      U l        [        U5      U l        [        U5      U l        UU l	        UU l
        UU l        [        U R                  5      U l        X0l        XPl        X`l        Xpl        X@l        Xl        Xl        Xl        Xl        Xl        Xl        Xl        Xl        Xl        [        U R                  5      U R                  :w  dF  [        U R                  5      U R                  :w  d#  [        U R                  5      U R                  :w  aN  [9        S[        U R                  5       S[        U R                  5       S[        U R                  5       S35      eUU l        UU l        UU l        UU l         UU l!        UU l"        UU l#        UU l$        U U l%        U!U l&        U"U l'        g )N)pad_token_idbos_token_ideos_token_idzConfiguration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) = z`, `len(config.conv_stride) = z`, `len(config.conv_kernel) = z`. )(super__init__hidden_sizefeat_extract_normfeat_extract_activationlistconv_dimconv_strideconv_kernel	conv_biasnum_conv_pos_embeddingsnum_conv_pos_embedding_groupslennum_feat_extract_layersnum_hidden_layersintermediate_sizesqueeze_factor
hidden_actnum_attention_headshidden_dropoutattention_dropoutactivation_dropoutfeat_proj_dropoutfinal_dropout	layerdroplayer_norm_epsinitializer_range
vocab_size
ValueErrorapply_spec_augmentmask_time_probmask_time_lengthmask_time_min_masksmask_feature_probmask_feature_lengthmask_feature_min_masksctc_loss_reductionctc_zero_infinityuse_weighted_layer_sumclassifier_proj_size)(selfr*   r   r   r!   r   r   r    r"   r$   r#   r%   r&   r'   r)   r(   r   r   r   r   r   r   r   r   r,   r-   r.   r/   r0   r1   r2   r3   r4   r5   r6   r   r   r   kwargs	__class__s(                                          a/var/www/auris/envauris/lib/python3.13/site-packages/transformers/models/sew/configuration_sew.pyr   SEWConfig.__init__   s   R 	s6s<frs&!2'>$X,,"'>$-J*'*4=='9$!2!2,$#6 ,!2"4!2*",!2$ !!"d&B&BBD$$%)E)EEDMM"d&B&BB225dmm2D1E F))*++I#dN^N^J_I``bd  #5, 0#6 !2#6 &<# #5!2 '=#$8!    c                 b    [         R                  " [        R                  U R                  S5      $ )N   )	functoolsreduceoperatormulr   )r7   s    r:   inputs_to_logits_ratio SEWConfig.inputs_to_logits_ratio   s!    d.>.>BBr<   )#r$   r,   r#   r6   r   r   r   r   r3   r4   r   r   r%   r&   r    r"   r   r)   r   r(   r'   r1   r2   r0   r.   r/   r-   r!   r   r   r   r   r   r5   r*   )%    i      rF   i      gelu皙?rI   rI           rI   rI   g{Gz?gh㈵>grouprH   )@      rM   rM   rM      rN   rN   rN      rO   rO   rO   )   rG   r>   rG   r>   rG   r>   rG   r>   rG   r>   rG   r>   )
   r   r>   r   r>   r   r>   r   r>   rG   r>   rG   r>   FrM      Tg?rQ   rG   rJ   rQ   r   meanFFrN   r   r>   rG   )__name__
__module____qualname____firstlineno____doc__
model_typer   propertyrC   __static_attributes____classcell__)r9   s   @r:   r   r      s    {z J ! &Q;< #&( !$ M^9@ C Cr<   r   )rX   r?   rA   configuration_utilsr   utilsr   
get_loggerrT   loggerr   __all__r   r<   r:   <module>rb      sC       3  
		H	%bC  bCJ -r<   