
    fTh                        S SK JrJrJrJr  S SKrS SKJr  SSKJr  SSK	J
r
JrJrJr  SSKJr  SSKJr  SS	KJr  SS
KJr  SSKJr  SSKJrJrJrJrJr  SSKJrJ r   SSK!J"r"J#r#  SSK$J%r%  SSK&J'r'J(r(J)r)J*r*J+r+  SSK,J-r-  \*" 5       (       a  S SK.J/r/  SSK0J1r1  \+Rd                  " \35      r4\" S5       " S S\Rj                  5      5       r6 " S S\Rj                  5      r7S r8S?S jr9S\Rt                  S\;S\Rt                  4S jr< S@S \Rj                  S!\Rt                  S"\Rt                  S#\Rt                  S$\\Rt                     S%\=S&\=4S' jjr> " S( S)\Rj                  5      r? " S* S+\5      r@\( " S, S-\#5      5       rA " S. S/\Rj                  5      rB\( " S0 S1\A5      5       rC " S2 S3\\'5      rD\( " S4 S5\A\5      5       rE\(" S6S79 " S8 S9\A5      5       rF\( " S: S;\A5      5       rG\( " S< S=\A5      5       rH/ S>QrIg)A    )CallableOptionalTupleUnionN)nn   )ACT2FN)CacheDynamicCacheSlidingWindowCacheStaticCache)GenerationMixin)use_kernel_forward_from_hub)AttentionMaskConverter)FlashAttentionKwargs)GradientCheckpointingLayer)BaseModelOutputWithPastCausalLMOutputWithPastQuestionAnsweringModelOutput SequenceClassifierOutputWithPastTokenClassifierOutput)ROPE_INIT_FUNCTIONSdynamic_rope_update)ALL_ATTENTION_FUNCTIONSPreTrainedModel)Unpack)
LossKwargsauto_docstringcan_return_tupleis_torch_flex_attn_availablelogging   )Qwen3Config)	BlockMask)make_flex_block_causal_maskRMSNormc                   8   ^  \ rS rSrSU 4S jjrS rS rSrU =r$ )Qwen3RMSNorm9   c                    > [         TU ]  5         [        R                  " [        R
                  " U5      5      U l        X l        g)z+
Qwen3RMSNorm is equivalent to T5LayerNorm
N)super__init__r   	Parametertorchonesweightvariance_epsilon)selfhidden_sizeeps	__class__s      `/var/www/auris/envauris/lib/python3.13/site-packages/transformers/models/qwen3/modeling_qwen3.pyr,   Qwen3RMSNorm.__init__;   s/     	ll5::k#:; #    c                    UR                   nUR                  [        R                  5      nUR	                  S5      R                  SSS9nU[        R                  " X0R                  -   5      -  nU R                  UR                  U5      -  $ )N   T)keepdim)	dtypetor.   float32powmeanrsqrtr1   r0   )r2   hidden_statesinput_dtypevariances       r6   forwardQwen3RMSNorm.forwardC   sw    #))%((7 $$Q',,R,>%H?T?T4T(UU{{]--k:::r8   c                 ^    [        U R                  R                  5       SU R                   3$ )Nz, eps=)tupler0   shaper1   r2   s    r6   
extra_reprQwen3RMSNorm.extra_reprJ   s*    ))*+6$2G2G1HIIr8   )r1   r0   )gư>)	__name__
__module____qualname____firstlineno__r,   rF   rL   __static_attributes____classcell__r5   s   @r6   r(   r(   9   s    $;J Jr8   r(   c                   .   ^  \ rS rSrU 4S jrS rSrU =r$ )Qwen3MLPN   c                   > [         TU ]  5         Xl        UR                  U l        UR                  U l        [
        R                  " U R                  U R                  SS9U l        [
        R                  " U R                  U R                  SS9U l        [
        R                  " U R                  U R                  SS9U l	        [        UR                     U l        g NFbias)r+   r,   configr3   intermediate_sizer   Linear	gate_projup_proj	down_projr	   
hidden_actact_fnr2   r\   r5   s     r6   r,   Qwen3MLP.__init__O   s    !--!'!9!94#3#3T5K5KRWXyy!1!143I3IPUV4#9#94;K;KRWXV../r8   c                     U R                  U R                  U R                  U5      5      U R                  U5      -  5      nU$ N)ra   rc   r_   r`   )r2   xra   s      r6   rF   Qwen3MLP.forwardY   s6    NN4;;t~~a/@#ADLLQRO#ST	r8   )rc   r\   ra   r_   r3   r]   r`   )rN   rO   rP   rQ   r,   rF   rR   rS   rT   s   @r6   rV   rV   N   s    0 r8   rV   c                     U SSU R                   S   S-  24   nU SU R                   S   S-  S24   n[        R                  " U* U4SS9$ )z*Rotates half the hidden dims of the input..Nr;   r:   dim)rJ   r.   cat)rh   x1x2s      r6   rotate_halfrp   ^   sZ    	
3"!''"+"""	#B	
3q ""	#B99rc2YB''r8   c                     UR                  U5      nUR                  U5      nX-  [        U 5      U-  -   nX-  [        U5      U-  -   nXg4$ )a  Applies Rotary Position Embedding to the query and key tensors.

Args:
    q (`torch.Tensor`): The query tensor.
    k (`torch.Tensor`): The key tensor.
    cos (`torch.Tensor`): The cosine part of the rotary embedding.
    sin (`torch.Tensor`): The sine part of the rotary embedding.
    position_ids (`torch.Tensor`, *optional*):
        Deprecated and unused.
    unsqueeze_dim (`int`, *optional*, defaults to 1):
        The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
        sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
        that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
        k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
        cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
        the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
Returns:
    `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
)	unsqueezerp   )qkcossinposition_idsunsqueeze_dimq_embedk_embeds           r6   apply_rotary_pos_embr{   e   sS    ( --
&C
--
&Cw;q>C/0Gw;q>C/0Gr8   rC   n_repreturnc                     U R                   u  p#pEUS:X  a  U $ U SS2SS2SSS2SS24   R                  X#XU5      n U R                  X#U-  XE5      $ )z
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
r"   N)rJ   expandreshape)rC   r|   batchnum_key_value_headsslenhead_dims         r6   	repeat_kvr      s_    
 2?1D1D.Ez!!Qa"23::5W\dlmM  e(CTTTr8   modulequerykeyvalueattention_maskscalingdropoutc                 @   [        X R                  5      n[        X0R                  5      n	[        R                  " XR	                  SS5      5      U-  n
Ub"  US S 2S S 2S S 2S UR
                  S   24   nX-   n
[        R                  R                  U
S[        R                  S9R                  UR                  5      n
[        R                  R                  XU R                  S9n
[        R                  " X5      nUR	                  SS5      R                  5       nX4$ )Nr:   r   r;   )rl   r=   )ptrainingr"   )r   num_key_value_groupsr.   matmul	transposerJ   r   
functionalsoftmaxr?   r>   r=   r   r   
contiguous)r   r   r   r   r   r   r   kwargs
key_statesvalue_statesattn_weightscausal_maskattn_outputs                r6   eager_attention_forwardr      s     3 ; ;<JU$?$?@L<<';';Aq'ABWLL!$Q1.D
0@0@0D.D%DE#1==((2U]](SVVW\WbWbcL==((6??([L,,|:K''1-88:K$$r8   c                   F  ^  \ rS rSrSrS\S\4U 4S jjr  SS\R                  S\
\R                  \R                  4   S\\R                     S	\\   S
\\R                     S\\   S\
\R                  \\R                     \\
\R                        4   4S jjrSrU =r$ )Qwen3Attention   z=Multi-headed attention from 'Attention Is All You Need' paperr\   	layer_idxc                   > [         TU ]  5         Xl        X l        [	        USUR
                  UR                  -  5      U l        UR                  UR                  -  U l	        U R                  S-  U l
        UR                  U l        SU l        [        R                  " UR
                  UR                  U R                  -  UR                  S9U l        [        R                  " UR
                  UR                  U R                  -  UR                  S9U l        [        R                  " UR
                  UR                  U R                  -  UR                  S9U l        [        R                  " UR                  U R                  -  UR
                  UR                  S9U l        [)        U R                  UR*                  S9U l        [)        U R                  UR*                  S9U l        UR0                  U l        U R                  R2                  (       a<  [	        U R                  SS 5      b$  U R                  U R                  R4                  :  d  S U l        g g )Nr   g      TrZ   r4   sliding_window)r+   r,   r\   r   getattrr3   num_attention_headsr   r   r   r   attention_dropout	is_causalr   r^   attention_biasq_projk_projv_projo_projr(   rms_norm_epsq_normk_normr   use_sliding_windowmax_window_layersr2   r\   r   r5   s      r6   r,   Qwen3Attention.__init__   s   "
F4F4F&JdJd4de$*$>$>&B\B\$\!}}d*!'!9!9ii : :T]] JQWQfQf
 ii : :T]] JQWQfQf
 ii : :T]] JQWQfQf
 ii&&68J8JQWQfQf
 #4==f6I6IJ"4==f6I6IJ$33KK**%5t<H$++"?"??"&D @r8   rC   position_embeddingsr   past_key_valuecache_positionr   r}   c                    UR                   S S n/ UQSPU R                  P7nU R                  U R                  U5      R	                  U5      5      R                  SS5      n	U R                  U R                  U5      R	                  U5      5      R                  SS5      n
U R                  U5      R	                  U5      R                  SS5      nUu  p[        XX5      u  pUb$  XUS.nUR                  XU R                  U5      u  p[        nU R                  R                  S:w  ad  U R                  R                  S:X  a-  UR                  SS5      (       a  [         R#                  S	5        O[$        U R                  R                     nU" U U	U
UU4U R&                  (       d  S
OU R(                  U R*                  U R,                  S.UD6u  nnUR.                  " / UQSP76 R1                  5       nU R3                  U5      nUU4$ )Nr;   r"   r:   )rv   ru   r   eagersdpaoutput_attentionsFz`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.        )r   r   r   )rJ   r   r   r   viewr   r   r   r   r{   updater   r   r\   _attn_implementationgetloggerwarning_oncer   r   r   r   r   r   r   r   )r2   rC   r   r   r   r   r   input_shapehidden_shapequery_statesr   r   ru   rv   cache_kwargsattention_interfacer   r   s                     r6   rF   Qwen3Attention.forward   s    $))#2.88b8$--8{{4;;}#=#B#B<#PQ[[\]_`a[[]!;!@!@!NOYYZ[]^_
{{=166|DNNqRST&#7RU#[ %#&nUL'5'<'<ZW[WeWegs't$J(?;;++w6{{//69fjjI\^c>d>d##L
 '>dkk>^>^&_#$7
%
  $}}C$2H2HLL..
%
 
%
!\ "));;;;FFHkk+.L((r8   )r   r\   r   r   r   r   r   r   r   r   r   r   r   r   )NN)rN   rO   rP   rQ   __doc__r#   intr,   r.   Tensorr   r   r
   
LongTensorr   r   rF   rR   rS   rT   s   @r6   r   r      s    G'{ 's 'J +/590)||0) #5<<#=>0) !.	0)
 !0) !!1!120) -.0) 
u||Xell3XeELL>Q5RR	S0) 0)r8   r   c                     ^  \ rS rSrS\S\4U 4S jjr       SS\R                  S\	\R                     S\	\R                     S\	\   S	\	\   S
\	\   S\	\R                     S\	\\R                  \R                  4      S\\   S\\R                   \	\\R                   \R                   4      4   4S jjrSrU =r$ )Qwen3DecoderLayer   r\   r   c                   > [         TU ]  5         UR                  U l        [        XS9U l        [        U5      U l        [        UR                  UR                  S9U l	        [        UR                  UR                  S9U l
        UR                  (       a5  UR                  S:w  a$  [        R                  SUR                   S35        g g g )N)r\   r   r   flash_attention_2z=Sliding Window Attention is enabled but not implemented for `z)`; unexpected results may be encountered.)r+   r,   r3   r   	self_attnrV   mlpr(   r   input_layernormpost_attention_layernormr   r   r   r   r   s      r6   r,   Qwen3DecoderLayer.__init__   s    !--'vKF#+F,>,>FDWDWX(4V5G5GVM`M`(a%!!f&A&AEX&XOPVPkPkOl m9 9 'Y!r8   rC   r   rw   r   r   	use_cacher   r   r   r}   c	                     Un
U R                  U5      nU R                  " SUUUUUUUUS.U	D6u  pX-   nUn
U R                  U5      nU R                  U5      nX-   nU4nU(       a  X4-  nU$ )N)rC   r   rw   r   r   r   r   r    )r   r   r   r   )r2   rC   r   rw   r   r   r   r   r   r   residualself_attn_weightsoutputss                r6   rF   Qwen3DecoderLayer.forward  s     !,,]; ,0>> 
,
')%)/) 3
,
 
,
( !0 !55mD/ 0 "++Gr8   )r3   r   r   r   r   )NNNFFNN)rN   rO   rP   rQ   r#   r   r,   r.   r   r   r   r
   boolr   r   r   FloatTensorrF   rR   rS   rT   s   @r6   r   r      s   { s $ 2637*.,1$)59KO'||' !.' u//0	'
 !' $D>' D>' !!1!12' &eELL%,,,F&GH' -.' 
u  (51B1BEDUDU1U+V"WW	X' 'r8   r   c                   N    \ rS rSr\rSrSrS/rS/r	Sr
SrSrSrSrSrSrS rSrg)	Qwen3PreTrainedModeli6  modelTr   past_key_valuesc                    U R                   R                  n[        U[        R                  5      (       aW  UR
                  R                  R                  SUS9  UR                  b%  UR                  R                  R                  5         g g [        U[        R                  5      (       ad  UR
                  R                  R                  SUS9  UR                  b2  UR
                  R                  UR                     R                  5         g g [        U[        5      (       a&  UR
                  R                  R                  S5        g g )Nr   )rA   stdg      ?)r\   initializer_range
isinstancer   r^   r0   datanormal_r[   zero_	Embeddingpadding_idxr(   fill_)r2   r   r   s      r6   _init_weights"Qwen3PreTrainedModel._init_weightsE  s    kk++fbii((MM&&CS&9{{&  &&( '--MM&&CS&9!!-""6#5#56<<> .--MM$$S) .r8   r   N)rN   rO   rP   rQ   r#   config_classbase_model_prefixsupports_gradient_checkpointing_no_split_modules_skip_keys_device_placement_supports_flash_attn_2_supports_sdpa_supports_flex_attn_supports_cache_class_supports_quantized_cache_supports_static_cache_supports_attention_backendr   rR   r   r8   r6   r   r   6  sS    L&*#,-#4"5!N  $!"&*r8   r   c                   l   ^  \ rS rSrSS\4U 4S jjjr\R                  " 5       \S 5       5       r	Sr
U =r$ )Qwen3RotaryEmbeddingiS  r\   c                   > [         TU ]  5         [        US5      (       aH  UR                  b;  UR                  R	                  SUR                  R	                  S5      5      U l        OSU l        UR                  U l        UR                  U l        Xl	        [        U R
                     U l        U R                  U R                  U5      u  o0l        U R                  SUSS9  U R                  U l        g )Nrope_scaling	rope_typetypedefaultinv_freqF)
persistent)r+   r,   hasattrr   r   r   max_position_embeddingsmax_seq_len_cachedoriginal_max_seq_lenr\   r   rope_init_fnattention_scalingregister_bufferr  original_inv_freq)r2   r\   devicer  r5   s       r6   r,   Qwen3RotaryEmbedding.__init__T  s    6>**v/B/B/N#0044[&BUBUBYBYZ`BabDN&DN"("@"@$*$B$B!/?+/+<+<T[[&+Q((ZeD!%r8   c                 b   U R                   S S S 2S 4   R                  5       R                  UR                  S   SS5      R	                  UR
                  5      nUS S 2S S S 24   R                  5       n[        UR
                  R                  [        5      (       a0  UR
                  R                  S:w  a  UR
                  R                  OSn[        R                  " USS9   UR                  5       UR                  5       -  R                  SS5      n[        R                  " Xf4SS	9nUR                  5       U R                  -  nUR                  5       U R                  -  n	S S S 5        WR	                  UR                   S
9W	R	                  UR                   S
94$ ! , (       d  f       N@= f)Nr   r;   r"   mpscpuF)device_typeenabledr:   rk   )r=   )r  floatr   rJ   r>   r  r   r  strr.   autocastr   rm   ru   r
  rv   r=   )
r2   rh   rw   inv_freq_expandedposition_ids_expandedr  freqsembru   rv   s
             r6   rF   Qwen3RotaryEmbedding.forwarde  sR    !MM$4-8>>@GGHZHZ[\H]_acdehhijiqiqr ,QaZ 8 > > @'1!((--'E'E!((--[`J`ahhmmfk^^UC&,,.1F1L1L1NNYYZ[]^_E))UN3C'')d444C'')d444C	 D vvAGGv$cff177f&;;; DCs   $BF  
F.)r
  r\   r  r  r  r	  r   rg   )rN   rO   rP   rQ   r#   r,   r.   no_gradr   rF   rR   rS   rT   s   @r6   r   r   S  s6    /{ / /" ]]_<  <r8   r   c                     ^  \ rS rSrS\4U 4S jjrS rS r\\	         SS\
\R                     S\
\R                     S\
\R                     S	\
\   S
\
\R                     S\
\   S\
\   S\
\   S\
\R                     S\\   S\4S jj5       5       r SS\\R                  S4   S\R                  S\R                  S	\S\4
S jjr\S\R                  S\S\S\R2                  S\R                  S\S\S	\4S j5       rSrU =r$ )
Qwen3Modeliu  r\   c           	        > [         TU ]  U5        UR                  U l        UR                  U l        [
        R                  " UR                  UR                  U R                  5      U l        [
        R                  " [        UR                  5       Vs/ s H  n[        X5      PM     sn5      U l        [        UR                  UR                  S9U l        [#        US9U l        SU l        U R)                  5         g s  snf )Nr   )r\   F)r+   r,   pad_token_idr   
vocab_sizer   r   r3   embed_tokens
ModuleListrangenum_hidden_layersr   layersr(   r   normr   
rotary_embgradient_checkpointing	post_initr   s      r6   r,   Qwen3Model.__init__w  s     !.. ++LL):):F<N<NPTP`P`ammCHIaIaCbcCbiv1Cbc
 !!3!39L9LM	.f=&+# 	 ds   C?c                     U R                   $ rg   r"  rK   s    r6   get_input_embeddingsQwen3Model.get_input_embeddings  s       r8   c                     Xl         g rg   r-  r2   r   s     r6   set_input_embeddingsQwen3Model.set_input_embeddings  s    !r8   	input_idsr   rw   r   inputs_embedsr   r   output_hidden_statesr   flash_attn_kwargsr}   c
                 J   Ub  UOU R                   R                  nUb  UOU R                   R                  nUb  UOU R                   R                  nUS L US L-  (       a  [	        S5      eU R
                  (       a/  U R                  (       a  U(       a  [        R                  S5        Sn[        U[        S 5      [        45      (       d  [	        S5      eUc  U R                  U5      nU(       a  Uc
  [        5       nU	cD  Ub  UR                  5       OSn[        R                   " XUR"                  S   -   UR$                  S9n	Uc  U	R'                  S5      nU R)                  X%XU5      nUnU R+                  X5      nU(       a  SOS nU(       a  SOS nU R,                  S U R                   R.                    H7  nU(       a  X4-  nU" U4UUUUUU	US	.U
D6nUS   nU(       d  M.  UUS   4-  nM9     U R1                  U5      nU(       a  X4-  n[3        UU(       a  UOS UUS
9$ )Nz:You must specify exactly one of input_ids or inputs_embedszX`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`.FzBThe `past_key_values` should be either a `Cache` object or `None`.r   r"   r  r   )r   rw   r   r   r   r   r   )last_hidden_stater   rC   
attentions)r\   r   r6  r   
ValueErrorr)  r   r   r   r   r  r
   r"  r   get_seq_lengthr.   arangerJ   r  rr   _update_causal_maskr(  r&  r%  r'  r   )r2   r4  r   rw   r   r5  r   r   r6  r   r7  past_seen_tokensr   rC   r   all_hidden_statesall_self_attnsdecoder_layerlayer_outputss                      r6   rF   Qwen3Model.forward  sI    2C1N-TXT_T_TqTq$8$D $++JjJj 	 "+!6IDKK<Q<Q	-t";<YZZ&&4==Yj I /DJ+>??abb  --i8M0*nO!CRC^==?de"\\ ]5H5H5K"KTaThThN )33A6L..>L]
 & #oomJ #7BD0d![[)H4;;+H+HIM#!%55!)
*)."3#-$7
 $
M *!,M  =#3"55' J* 		-0  !11&+/8Od+%	
 	
r8   r$   input_tensorc                    U R                   R                  S:X  a]  UbN  UbK  US S 2S4   R                  5       R                  5       UR	                  5       S   :g  nU(       a  [        S5      eUb  SU;   a  U$ g U R                   R                  S:X  a,  [        U[        R                  5      (       a  [        U5      nU$ Ub  UR                  5       OSn[        U[        5      n[        U[        5      n	U R                   R                  S:X  aQ  U(       dJ  U	(       dC  U(       d<  [        R                  " UUUU R                   R                  U R                   S9(       a  g UR"                  n
[        R$                  " U
5      R&                  nUR(                  S	   nU	(       d  U(       a  UR+                  5       nO5[        U[        R                  5      (       a  UR(                  S   OX|-   S	-   nU R-                  UUUU
UUR(                  S   U R                   US
9nU R                   R                  S:X  a:  Ub7  UR.                  R0                  S;   a  U(       d  [        R2                  " X5      nU$ )Nr   r;   r   zYou are attempting to perform batched generation with padding_side='right' this may lead to unexpected behaviour for Flash Attention version of Qwen3. Make sure to  call `tokenizer.padding_side  = 'left'` before tokenizing the input. r   flex_attentionr   )r5  past_key_values_lengthr   is_trainingr"   )sequence_lengthtarget_lengthr=   r   
batch_sizer\   r   )cudaxpunpu)r\   r   sumitemsizer<  r   r.   r   r%   r=  r   r   r   _ignore_causal_mask_sdpar   r   r=   finfominrJ   get_max_cache_shape5_prepare_4d_causal_attention_mask_with_cache_positionr  r  _unmask_unattended)r2   r   rF  r   r   r   is_padding_rightr@  using_static_cacheusing_sliding_window_cacher=   	min_dtyperK  rL  r   s                  r6   r?  Qwen3Model._update_causal_mask  s;    ;;++/BB)o.I#1!R%#8#<#<#>#C#C#EIZIZI\]^I_#_ #$a 
 )c^.C%%;;++/??.%,,77!<^!L!!
 @O?Z?99;`a'E%/AS%T" KK,,6'+E%%>>*'7#{{99 MM ""KK&**	&,,Q/%);+??AM
 nell;; $$R(%7!;  PP+')#))!,;;+ Q 	
 KK,,6*%%**.DD%
 1CCK[Kr8   rK  rL  r=   rM  c                    U b  U R                  5       S:X  a  U nU$ [        R                  " U5      R                  n	[        R                  " X4XUR
                  S9n[        R                  " X$R
                  S9UR                  SS5      :  n
UR                  5       n[        USS5      (       av  UR                  bi  [        U[        5      (       a  X:  aO  [        R                  " X$R
                  S9UR                  SS5      UR                  -
  :*  nU
R                  U5        X-  nUSSSS2SS24   R                  USSS5      nU b  UR                  5       nU R                   S   U:  a  U SS2SU24   n U R                   S   nUSS2SS2SS2SU24   U SS2SSSS24   R#                  UR
                  5      -   nUS	:H  nUSS2SS2SS2SU24   R%                  X5      USS2SS2SS2SU24'   U$ )
aQ  
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.

Args:
    attention_mask (`torch.Tensor`):
        A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`.
    sequence_length (`int`):
        The sequence length being processed.
    target_length (`int`):
        The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet.
    dtype (`torch.dtype`):
        The dtype to use for the 4D attention mask.
    cache_position (`torch.Tensor`):
        Indices depicting the position of the input sequence tokens in the sequence.
    batch_size (`torch.Tensor`):
        Batch size.
    config (`Qwen3Config`):
        The model's configuration class
    past_key_values (`Cache`):
        The cache class that is being used currently to generate
N   )
fill_valuer=   r  r9  r;   r"   r   Tr   )rl   r.   rU  rV  fullr  r>  r   get_text_configr   r   r   r   bitwise_or_r   clonerJ   r>   masked_fill)r   rK  rL  r=   r   rM  r\   r   r   r]  diagonal_attend_masktext_configsliding_attend_maskmask_lengthpadding_masks                  r6   rX  @Qwen3Model._prepare_4d_causal_attention_mask_with_cache_positionC  s   B %.*<*<*>!*C(K@ = E*..I** 0Y\j\q\qK $)<<F[F[#\_m_u_uA` $  !002K{$8$??KD^D^Dj "/3EFF/Ji*/,,}MbMb*c&..r158R8RR+' )445HI/K%dD!Q&67>>z1bRTUK))//1!''+m;%3A~~4E%FN,2226*1aL[L+@ANSTVZ\`bcScDdDgDg&&E    ,q05@Aq,;,AV5W5c5c 6Aq!\k\12 r8   )r"  r)  r&  r'  r   r(  r!  	NNNNNNNNN)F)rN   rO   rP   rQ   r#   r,   r.  r2  r   r   r   r.   r   r   r
   r   r   r   r   r   rF   r   r?  staticmethodr   r=   rX  rR   rS   rT   s   @r6   r  r  u  s   {  !"  151537+/59$(,0/359\
E,,-\
 !.\
 u//0	\

 "%\
   1 12\
 D>\
 $D>\
 'tn\
 !!1!12\
 $$89\
 
!\
  \
H #(TellK78T llT 	T
 T  Tl BBB B {{	B
 B B B B Br8   r  c                       \ rS rSrSrg)KwargsForCausalLMi  r   N)rN   rO   rP   rQ   rR   r   r8   r6   rp  rp    s    3r8   rp  c                     ^  \ rS rSrS/rSS0rSS/S/40rU 4S jrS rS	 r	S
 r
S rS rS r\\           SS\\R$                     S\\R&                     S\\R$                     S\\   S\\R*                     S\\R$                     S\\   S\\   S\\   S\\R$                     S\\\R&                  4   S\\   S\4S jj5       5       rSrU =r$ )Qwen3ForCausalLMi  zlm_head.weightlm_headcolwise_reprC   logitsc                    > [         TU ]  U5        [        U5      U l        UR                  U l        [
        R                  " UR                  UR                  SS9U l        U R                  5         g rY   )
r+   r,   r  r   r!  r   r^   r3   rs  r*  rd   s     r6   r,   Qwen3ForCausalLM.__init__  sU     '
 ++yy!3!3V5F5FUS 	r8   c                 .    U R                   R                  $ rg   r   r"  rK   s    r6   r.  %Qwen3ForCausalLM.get_input_embeddings      zz&&&r8   c                 $    XR                   l        g rg   ry  r1  s     r6   r2  %Qwen3ForCausalLM.set_input_embeddings      "'

r8   c                     U R                   $ rg   rs  rK   s    r6   get_output_embeddings&Qwen3ForCausalLM.get_output_embeddings  s    ||r8   c                     Xl         g rg   r  )r2   new_embeddingss     r6   set_output_embeddings&Qwen3ForCausalLM.set_output_embeddings  s    %r8   c                     Xl         g rg   r   )r2   decoders     r6   set_decoderQwen3ForCausalLM.set_decoder  s    
r8   c                     U R                   $ rg   r  rK   s    r6   get_decoderQwen3ForCausalLM.get_decoder  s    zzr8   r4  r   rw   r   r5  labelsr   r   r6  r   logits_to_keepr   r}   c                    Ub  UOU R                   R                  nU	b  U	OU R                   R                  n	U R                  " SUUUUUUUU	U
S.	UD6nUR                  n[        U[        5      (       a  [        U* S5      OUnU R                  USS2USS24   5      nSnUb)  U R                  " SUX`R                   R                  S.UD6n[        UUUR                  UR                  UR                  S9$ )a  
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
    Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
    config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
    (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.

Example:

```python
>>> from transformers import AutoTokenizer, Qwen3ForCausalLM

>>> model = Qwen3ForCausalLM.from_pretrained("Qwen/Qwen3-8B")
>>> tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-8B")

>>> prompt = "Hey, are you conscious? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")

>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
```N)	r4  r   rw   r   r5  r   r   r6  r   )ru  r  r!  lossru  r   rC   r;  r   )r\   r   r6  r   r:  r   r   slicers  loss_functionr!  r   r   rC   r;  )r2   r4  r   rw   r   r5  r  r   r   r6  r   r  r   r   rC   slice_indicesru  r  s                     r6   rF   Qwen3ForCausalLM.forward  s   N 2C1N-TXT_T_TqTq$8$D $++JjJj 	
 ,0:: ,
)%+'/!5),
 ,
  118B>SV8W8W~ot4]kmA}a,?@A%%pVF{{OeOepiopD%#33!//))
 	
r8   )rs  r   r!  )NNNNNNNNNNr   )rN   rO   rP   rQ   _tied_weights_keys_tp_plan_pp_planr,   r.  r2  r  r  r  r  r   r   r   r.   r   r   r
   r   r   r   r   r   rp  r   rF   rR   rS   rT   s   @r6   rr  rr    s   *+=)H_-z:;H'(&  151537+/59-1$(,0/35934G
E,,-G
 !.G
 u//0	G

 "%G
   1 12G
 ))*G
 D>G
 $D>G
 'tnG
 !!1!12G
 c5<</0G
 *+G
 
 G
  G
r8   rr  a  
    The Qwen3 Model transformer with a sequence classification head on top (linear layer).

    [`Qwen3ForSequenceClassification`] uses the last token in order to do the classification, as other causal models
    (e.g. GPT-2) do.

    Since it does classification on the last token, it requires to know the position of the last token. If a
    `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
    no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
    padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
    each row of the batch).
    )custom_introc                   *  ^  \ rS rSrU 4S jrS rS r\\         SS\	\
R                     S\	\
R                     S\	\
R                     S\	\   S	\	\
R                     S
\	\
R                     S\	\   S\	\   S\	\   S\4S jj5       5       rSrU =r$ )Qwen3ForSequenceClassificationi  c                    > [         TU ]  U5        UR                  U l        [        U5      U l        [
        R                  " UR                  U R                  SS9U l        U R                  5         g rY   )
r+   r,   
num_labelsr  r   r   r^   r3   scorer*  rd   s     r6   r,   'Qwen3ForSequenceClassification.__init__  sS      ++'
YYv114??O
 	r8   c                 .    U R                   R                  $ rg   ry  rK   s    r6   r.  3Qwen3ForSequenceClassification.get_input_embeddings  r{  r8   c                 $    XR                   l        g rg   ry  r1  s     r6   r2  3Qwen3ForSequenceClassification.set_input_embeddings  r~  r8   r4  r   rw   r   r5  r  r   r   r6  r}   c
                    U R                  UUUUUUUU	S9n
U
R                  nU R                  U5      nUb  UR                  S   nOUR                  S   nU R                  R
                  c  US:w  a  [        S5      eU R                  R
                  c  SnOUb  XR                  R
                  :g  R                  UR                  [        R                  5      n[        R                  " UR                  S   UR                  [        R                  S9nUU-  R                  S5      nO.Sn[        R                  U R                  R                    S35        U[        R                  " XR                  S	9U4   nSnUb  U R#                  XUU R                  S
9n[%        UUU
R&                  U
R(                  U
R*                  S9$ )e  
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
    Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
    config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
    `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
r   rw   r   r5  r   r   r6  Nr   r"   z=Cannot handle batch sizes > 1 if no padding token is defined.r;   )r  r=   z will not detect padding tokens in `inputs_embeds`. Results may be unexpected if using padding tokens in conjunction with `inputs_embeds.`r9  )ru  r  pooled_logitsr\   r  )r   r:  r  rJ   r\   r   r<  r>   r  r.   int32r>  argmaxr   r   r5   rN   r  r   r   rC   r;  )r2   r4  r   rw   r   r5  r  r   r   r6  transformer_outputsrC   ru  rM  last_non_pad_tokennon_pad_masktoken_indicesr  r  s                      r6   rF   &Qwen3ForSequenceClassification.forward  s   * 8<zz)%+'/!5 8B 	8
 ,==M* "+J&,,Q/J;;##+
a\]];;##+!#"%)A)AAEEfmmUZU`U`aL!LL)<V]]Z_ZeZefM"/,">!F!Fr!J!#>>**+ ,Z Z
 u||J}}MOaab%%VR_hlhshs%tD/ /??-;;*55
 	
r8   )r   r  r  rm  )rN   rO   rP   rQ   r,   r.  r2  r   r   r   r.   r   r   r
   r   r   r   rF   rR   rS   rT   s   @r6   r  r    s    '(  151537+/59-1$(,0/3A
E,,-A
 !.A
 u//0	A

 "%A
   1 12A
 ))*A
 D>A
 $D>A
 'tnA
 
*A
  A
r8   r  c                   *  ^  \ rS rSrU 4S jrS rS r\\         SS\	\
R                     S\	\
R                     S\	\
R                     S\	\   S	\	\
R                     S
\	\
R                     S\	\   S\	\   S\	\   S\4S jj5       5       rSrU =r$ )Qwen3ForTokenClassificationi]  c                   > [         TU ]  U5        UR                  U l        [        U5      U l        [        USS 5      b  UR                  nO[        USS 5      b  UR                  nOSn[        R                  " U5      U l
        [        R                  " UR                  UR                  5      U l        U R                  5         g )Nclassifier_dropouthidden_dropoutg?)r+   r,   r  r  r   r   r  r  r   Dropoutr   r^   r3   r  r*  )r2   r\   r  r5   s      r6   r,   $Qwen3ForTokenClassification.__init___  s      ++'
6/6B!'!:!:V-t4@!'!6!6!$zz"45YYv1163D3DE
 	r8   c                 .    U R                   R                  $ rg   ry  rK   s    r6   r.  0Qwen3ForTokenClassification.get_input_embeddingso  r{  r8   c                 $    XR                   l        g rg   ry  r1  s     r6   r2  0Qwen3ForTokenClassification.set_input_embeddingsr  r~  r8   r4  r   rw   r   r5  r  r   r   r6  r}   c
                    U R                  UUUUUUUU	S9n
U
R                  nU R                  U5      nU R                  U5      nSnUb  U R	                  XU R
                  5      n[        UUU
R                  U
R                  S9$ )r  r  N)r  ru  rC   r;  )	r   r:  r   r  r  r\   r   rC   r;  )r2   r4  r   rw   r   r5  r  r   r   r6  r   sequence_outputru  r  s                 r6   rF   #Qwen3ForTokenClassification.forwardu  s    * ,0::)%+'/!5 ,6 	,
 "33,,7O,%%fdkkBD$!//))	
 	
r8   )r   r   r  r  rm  )rN   rO   rP   rQ   r,   r.  r2  r   r   r   r.   r   r   r
   r   r   r   rF   rR   rS   rT   s   @r6   r  r  ]  s     '(  151537+/59-1$(,0/3*
E,,-*
 !.*
 u//0	*

 "%*
   1 12*
 ))**
 D>*
 $D>*
 'tn*
 
*
  *
r8   r  c                   B  ^  \ rS rSrSrU 4S jrS rS r\\	         SS\
\R                     S\
\R                     S\
\R                     S	\
\   S
\
\R                     S\
\R                     S\
\R                     S\
\   S\
\   S\4S jj5       5       rSrU =r$ )Qwen3ForQuestionAnsweringi  transformerc                    > [         TU ]  U5        [        U5      U l        [        R
                  " UR                  S5      U l        U R                  5         g )Nr:   )	r+   r,   r  r  r   r^   r3   
qa_outputsr*  rd   s     r6   r,   "Qwen3ForQuestionAnswering.__init__  sA     %f-))F$6$6: 	r8   c                 .    U R                   R                  $ rg   r  r"  rK   s    r6   r.  .Qwen3ForQuestionAnswering.get_input_embeddings  s    ,,,r8   c                 $    XR                   l        g rg   r  r1  s     r6   r2  .Qwen3ForQuestionAnswering.set_input_embeddings  s    (-%r8   r4  r   rw   r   r5  start_positionsend_positionsr   r6  r}   c
           
         U R                  UUUUUUU	S9nUR                  nU R                  U5      nUR                  SSS9u  pUR	                  S5      R                  5       nUR	                  S5      R                  5       nS nUb  Ub  U R                  " XXg40 U
D6n[        UUUUR                  UR                  S9$ )N)r   rw   r   r5  r   r6  r"   r;   rk   )r  start_logits
end_logitsrC   r;  )
r  r:  r  splitsqueezer   r  r   rC   r;  )r2   r4  r   rw   r   r5  r  r  r   r6  r   r   r  ru  r  r  r  s                    r6   rF   !Qwen3ForQuestionAnswering.forward  s     ,0+;+;)%+'/!5 ,< ,
 "331#)<<r<#: #++B/::<''+668
&=+D%%libhiD+%!!//))
 	
r8   )r  r  rm  )rN   rO   rP   rQ   r   r,   r.  r2  r   r   r   r.   r   r   r
   r   r   r   rF   rR   rS   rT   s   @r6   r  r    s    %-.  151537+/596:48,0/3(
E,,-(
 !.(
 u//0	(

 "%(
   1 12(
 "%"2"23(
   0 01(
 $D>(
 'tn(
 
&(
  (
r8   r  )rr  r  r  r   r  r  )Nr"   )r   )Jtypingr   r   r   r   r.   r   activationsr	   cache_utilsr
   r   r   r   
generationr   integrationsr   modeling_attn_mask_utilsr   modeling_flash_attention_utilsr   modeling_layersr   modeling_outputsr   r   r   r   r   modeling_rope_utilsr   r   modeling_utilsr   r   processing_utilsr   utilsr   r   r   r    r!   configuration_qwen3r#   !torch.nn.attention.flex_attentionr$   integrations.flex_attentionr%   
get_loggerrN   r   Moduler(   rV   rp   r{   r   r   r   r  r   r   r   r   r   r  rp  rr  r  r  r  __all__r   r8   r6   <module>r     sC  , 4 3   ! O O ) 7 > B 9  L F & h h ,  !!;J 
		H	% Y'J299 J (J(ryy  (6	UU\\ 	U# 	U%,, 	U& %II%<<% 
% <<	%
 U\\*% % %4S)RYY S)l72 7t *? * *8<299 <D P% P Pf ?,j > i
+_ i
 i
X S
%9 S
S
l C
"6 C
 C
L ;
 4 ;
 ;
|r8   