
    fThg#                     <    S r SSKJr  SSKJr   " S S\5      rS/rg)zOLMoE model configuration   )PretrainedConfig)rope_config_validationc                   l   ^  \ rS rSrSrSrS/r                         SU 4S jjrSrU =r	$ )OlmoeConfig   a<  
This is the configuration class to store the configuration of a [`OlmoeModel`]. It is used to instantiate an OLMoE
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the [allenai/OLMoE-1B-7B-0924](https://huggingface.co/allenai/OLMoE-1B-7B-0924).

Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.


Args:
    vocab_size (`int`, *optional*, defaults to 50304):
        Vocabulary size of the OLMoE model. Defines the number of different tokens that can be represented by the
        `inputs_ids` passed when calling [`OlmoeModel`]
    hidden_size (`int`, *optional*, defaults to 2048):
        Dimension of the hidden representations.
    intermediate_size (`int`, *optional*, defaults to 2048):
        Dimension of the MLP representations.
    num_hidden_layers (`int`, *optional*, defaults to 16):
        Number of hidden layers in the Transformer decoder.
    num_attention_heads (`int`, *optional*, defaults to 16):
        Number of attention heads for each attention layer in the Transformer decoder.
    num_key_value_heads (`int`, *optional*):
        This is the number of key_value heads that should be used to implement Grouped Query Attention. If
        `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
        `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
        converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
        by meanpooling all the original heads within that group. For more details checkout [this
        paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
        `num_attention_heads`.
    hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
        The non-linear activation function (function or string) in the decoder.
    max_position_embeddings (`int`, *optional*, defaults to 4096):
        The maximum sequence length that this model might ever be used with.
    initializer_range (`float`, *optional*, defaults to 0.02):
        The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
    rms_norm_eps (`float`, *optional*, defaults to 1e-05):
        The epsilon used by the rms normalization layers.
    use_cache (`bool`, *optional*, defaults to `True`):
        Whether or not the model should return the last key/values attentions (not used by all models). Only
        relevant if `config.is_decoder=True`.
    pad_token_id (`int`, *optional*, defaults to 1):
        Padding token id.
    bos_token_id (`int`, *optional*):
        Beginning of stream token id.
    eos_token_id (`int`, *optional*, defaults to 50279):
        End of stream token id.
    tie_word_embeddings (`bool`, *optional*, defaults to `False`):
        Whether to tie weight embeddings
    rope_theta (`float`, *optional*, defaults to 10000.0):
        The base period of the RoPE embeddings.
    rope_scaling (`Dict`, *optional*):
        Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
        strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
        `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
        `max_position_embeddings` to the expected new maximum. See the following thread for more information on how
        these scaling strategies behave:
        https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
        experimental feature, subject to breaking API changes in future versions.
    attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
        Whether to use a bias in the query, key, value and output projection layers during self-attention.
    attention_dropout (`float`, *optional*, defaults to 0.0):
        The dropout ratio for the attention probabilities.
    clip_qkv (`float`, *optional*):
        If not `None`, elements of query, key and value attention states are clipped so that their
        absolute value does not exceed this value.
    num_experts_per_tok (`int`, *optional*, defaults to 8):
        Number of selected experts.
    num_experts (`int`, *optional*, defaults to 64):
        Number of routed experts.
    output_router_logits (`bool`, *optional*, defaults to `False`):
        Whether or not the router logits should be returned by the model. Enabling this will also
        allow the model to output the auxiliary loss, including load balancing loss and router z-loss.
    router_aux_loss_coef (`float`, *optional*, defaults to 0.01):
        The aux loss factor for the total loss.
    norm_topk_prob (`bool`, *optional*, defaults to `False`):
        Whether to normalize the topk probabilities.

```python
>>> from transformers import OlmoeModel, OlmoeConfig

>>> # Initializing a OLMoE 7B A1B style configuration
>>> configuration = OlmoeConfig()

>>> # Initializing a model from the OLMoE 7B A1B style configuration
>>> model = OlmoeModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config
```olmoepast_key_valuesc                   > Xl         Xl        X l        X0l        X@l        XPl        Uc  UnX`l        Xpl        Xl        Xl	        Xl
        UU l        UU l        UU l        UU l        UU l        UU l        UU l        UU l        UU l        UU l        U R                  b,  SU R                  ;   a  U R                  S   U R                  S'   [+        U 5        [,        TU ]\  " SUUUUS.UD6  g )Ntype	rope_type)pad_token_idbos_token_ideos_token_idtie_word_embeddings )
vocab_sizemax_position_embeddingshidden_sizeintermediate_sizenum_hidden_layersnum_attention_headsnum_key_value_heads
hidden_actinitializer_rangerms_norm_eps	use_cache
rope_thetarope_scalingattention_biasattention_dropoutclip_qkvnum_experts_per_toknum_expertsoutput_router_logitsrouter_aux_loss_coefnorm_topk_probr   super__init__)selfr   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r    r!   r"   r#   r$   r%   r&   kwargs	__class__s                              e/var/www/auris/envauris/lib/python3.13/site-packages/transformers/models/olmoe/configuration_olmoe.pyr(   OlmoeConfig.__init__p   s   : %'>$&!2!2#6  &"5#6 $!2("$(,!2 #6 &$8!$8!, (Vt7H7H-H-1->->v-FDk*t$ 	
%%% 3		

 	
    )r   r    r!   r   r   r   r   r   r&   r   r#   r"   r   r   r$   r   r   r   r%   r   r   )i     r/      r0   Nsilui   g{Gz?gh㈵>T   Nig  Fg     @NFg        N   @   Fg{Gz?F)
__name__
__module____qualname____firstlineno____doc__
model_typekeys_to_ignore_at_inferencer(   __static_attributes____classcell__)r+   s   @r,   r   r      ss    Xt J#4"5   $!"!5C
 C
r.   r   N)r9   configuration_utilsr   modeling_rope_utilsr   r   __all__r   r.   r,   <module>rA      s)      3 9a
" a
H /r.   