#                🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
#           This file was automatically generated from src/transformers/models/mlcd/modular_mlcd.py.
#               Do NOT edit this file manually as any edits will be overwritten by the generation of
#             the file from the modular. If any change should be done, please apply the change to the
#                          modular_mlcd.py file directly. One of our CI enforces this.
#                🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# coding=utf-8
# Copyright 2025 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Callable, Optional, Tuple, Union

import torch
import torch.nn as nn

from ...activations import ACT2FN
from ...modeling_flash_attention_utils import FlashAttentionKwargs
from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
from ...processing_utils import Unpack
from ...utils import auto_docstring, can_return_tuple, logging, torch_int
from .configuration_mlcd import MLCDVisionConfig


logger = logging.get_logger(__name__)


class MLCDMLP(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.config = config
        self.activation_fn = ACT2FN[config.hidden_act]
        self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
        self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        hidden_states = self.fc1(hidden_states)
        hidden_states = self.activation_fn(hidden_states)
        hidden_states = self.fc2(hidden_states)
        return hidden_states


class MLCDRotaryEmbedding(nn.Module):
    def __init__(self, dim: int, theta: float = 10000.0) -> None:
        super().__init__()
        inv_freq = 1.0 / (theta ** (torch.arange(0, dim, 2, dtype=torch.float) / dim))
        self.register_buffer("inv_freq", inv_freq, persistent=False)

    def forward(self, num_patches_height: int, num_patches_width: int) -> torch.Tensor:
        """
        Calculate the Rotary Position Embedding (RoPE) for MLCDVisionModel based on the grid size.

        Args:
            num_patches_height (int): Number of patches in the height dimension.
            num_patches_width (int): Number of patches in the width dimension.

        Returns:
            torch.Tensor: Rotary positional embeddings for the given grid size.
        """
        # Generate position IDs for height and width dimensions
        hpos_ids = (
            torch.arange(num_patches_height, device=self.inv_freq.device).unsqueeze(1).expand(-1, num_patches_width)
        )
        wpos_ids = (
            torch.arange(num_patches_width, device=self.inv_freq.device).unsqueeze(0).expand(num_patches_height, -1)
        )

        # Flatten and stack the position IDs
        pos_ids = torch.stack([hpos_ids.flatten(), wpos_ids.flatten()], dim=-1)

        # Generate the full rotary positional embeddings for the maximum grid size
        max_grid_size = max(num_patches_height, num_patches_width)
        seq = torch.arange(max_grid_size, device=self.inv_freq.device, dtype=self.inv_freq.dtype)
        rotary_pos_emb_full = torch.outer(seq, self.inv_freq)

        # Select and flatten the embeddings based on the position IDs
        rotary_pos_emb = rotary_pos_emb_full[pos_ids].flatten(1)

        return rotary_pos_emb


class MLCDVisionEmbeddings(nn.Module):
    def __init__(self, config: MLCDVisionConfig):
        super().__init__()
        self.config = config
        self.embed_dim = config.hidden_size
        self.image_size = config.image_size
        self.patch_size = config.patch_size

        self.class_embedding = nn.Parameter(torch.randn(self.embed_dim))

        self.patch_embedding = nn.Conv2d(
            in_channels=config.num_channels,
            out_channels=self.embed_dim,
            kernel_size=self.patch_size,
            stride=self.patch_size,
            bias=False,
        )

        self.num_patches = (self.image_size // self.patch_size) ** 2
        self.num_positions = self.num_patches + 1
        self.register_buffer("position_ids", torch.arange(self.num_positions).expand((1, -1)), persistent=False)

    def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor:
        """
        This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher resolution
        images. This method is also adapted to support torch.jit tracing.

        Adapted from:
        - https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174-L194, and
        - https://github.com/facebookresearch/dinov2/blob/e1277af2ba9496fbadf7aec6eba56e8d882d1e35/dinov2/models/vision_transformer.py#L179-L211
        """

        num_patches = embeddings.shape[1] - 1
        position_embedding = self.position_embedding.weight.unsqueeze(0)
        num_positions = position_embedding.shape[1] - 1

        # always interpolate when tracing to ensure the exported model works for dynamic input shapes
        if not torch.jit.is_tracing() and num_patches == num_positions and height == width:
            return self.position_embedding(self.position_ids)

        class_pos_embed = position_embedding[:, :1]
        patch_pos_embed = position_embedding[:, 1:]

        dim = embeddings.shape[-1]

        new_height = height // self.patch_size
        new_width = width // self.patch_size

        sqrt_num_positions = torch_int(num_positions**0.5)
        patch_pos_embed = patch_pos_embed.reshape(1, sqrt_num_positions, sqrt_num_positions, dim)
        patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2)

        patch_pos_embed = nn.functional.interpolate(
            patch_pos_embed,
            size=(new_height, new_width),
            mode="bicubic",
            align_corners=False,
        )

        patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)

        return torch.cat((class_pos_embed, patch_pos_embed), dim=1)

    def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
        batch_size = pixel_values.shape[0]
        target_dtype = self.patch_embedding.weight.dtype
        # patch_embeds -> shape = [batch, width, grid, grid]
        patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype))
        patch_embeds = patch_embeds.flatten(2).transpose(1, 2)

        class_embeds = self.class_embedding.expand(batch_size, 1, -1)
        embeddings = torch.cat([class_embeds, patch_embeds], dim=1)

        return embeddings


def eager_attention_forward(
    module: nn.Module,
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
    attention_mask: Optional[torch.Tensor],
    scaling: float,
    dropout: float = 0.0,
    **kwargs,
):
    key_states = repeat_kv(key, module.num_key_value_groups)
    value_states = repeat_kv(value, module.num_key_value_groups)

    attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
    if attention_mask is not None:
        causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
        attn_weights = attn_weights + causal_mask

    attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
    attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
    attn_output = torch.matmul(attn_weights, value_states)
    attn_output = attn_output.transpose(1, 2).contiguous()

    return attn_output, attn_weights


def rotate_half(x):
    """Rotates half the hidden dims of the input."""
    x1 = x[..., : x.shape[-1] // 2]
    x2 = x[..., x.shape[-1] // 2 :]
    return torch.cat((-x2, x1), dim=-1)


def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
    """
    This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
    num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
    """
    batch, num_key_value_heads, slen, head_dim = hidden_states.shape
    if n_rep == 1:
        return hidden_states
    hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
    return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)


def apply_rotary_pos_emb_vision(
    q: torch.Tensor, k: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor]:
    orig_q_dtype = q.dtype
    orig_k_dtype = k.dtype
    q, k = q.float(), k.float()
    cos, sin = cos.unsqueeze(-2).float(), sin.unsqueeze(-2).float()
    q_embed = (q * cos) + (rotate_half(q) * sin)
    k_embed = (k * cos) + (rotate_half(k) * sin)
    q_embed = q_embed.to(orig_q_dtype)
    k_embed = k_embed.to(orig_k_dtype)
    return q_embed, k_embed


class MLCDAttention(nn.Module):
    """Multi-headed attention from 'Attention Is All You Need' paper
    Multi-headed attention with RoPE. Refer to papers:
        - Attention is all you need:
            https://arxiv.org/abs/1706.03762
        - RoFormer: Enhanced Transformer with Rotary Position Embedding:
            https://arxiv.org/abs/2104.09864
    """

    def __init__(self, config: MLCDVisionConfig):
        super().__init__()
        self.config = config
        self.embed_dim = config.hidden_size
        self.num_heads = config.num_attention_heads
        self.head_dim = self.embed_dim // self.num_heads
        if self.head_dim * self.num_heads != self.embed_dim:
            raise ValueError(
                f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
                f" {self.num_heads})."
            )
        self.scale = self.head_dim**-0.5
        self.dropout = config.attention_dropout
        self.is_causal = False

        self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
        self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
        self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
        self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
        self.num_key_value_groups = config.num_key_value_groups

    def forward(
        self,
        hidden_states: torch.Tensor,
        position_embeddings: Tuple[torch.Tensor, torch.Tensor],
        attention_mask: Optional[torch.Tensor] = None,
        **kwargs: Unpack[FlashAttentionKwargs],
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
        """Input shape: Batch x Time x Channel"""
        batch_size, seq_length = hidden_states.shape[:-1]

        # Each of shape: [batch_size, seq_length, num_heads, head_dim]
        query_states = self.q_proj(hidden_states).reshape((batch_size, seq_length, self.num_heads, self.head_dim))
        key_states = self.k_proj(hidden_states).reshape((batch_size, seq_length, self.num_heads, self.head_dim))
        value_states = self.v_proj(hidden_states).reshape((batch_size, seq_length, self.num_heads, self.head_dim))

        # Apply positional embeddings
        cos = position_embeddings[0].unsqueeze(0).float()
        sin = position_embeddings[1].unsqueeze(0).float()
        query_states, key_states = apply_rotary_pos_emb_vision(query_states, key_states, cos, sin)

        # Each of shape: [batch_size, num_heads, seq_length, head_dim]
        query_states = query_states.permute(0, 2, 1, 3).contiguous()
        key_states = key_states.permute(0, 2, 1, 3).contiguous()
        value_states = value_states.permute(0, 2, 1, 3).contiguous()

        attention_interface: Callable = eager_attention_forward
        if self.config._attn_implementation != "eager":
            if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
                logger.warning_once(
                    "`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
                    'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
                )
            else:
                attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]

        attn_output, attn_weights = attention_interface(
            self,
            query_states,
            key_states,
            value_states,
            attention_mask,
            dropout=0.0 if not self.training else self.dropout,
            scaling=self.scale,
            is_causal=self.is_causal,
            **kwargs,
        )

        attn_output = attn_output.permute(1, 0, 2, 3).contiguous()  # [seq_length, batch_size, num_heads, head_dim]
        attn_output = attn_output.view(seq_length, batch_size, -1)  # [seq_length, batch_size, embedding_dim]
        attn_output = self.out_proj(attn_output)
        attn_output = attn_output.permute(1, 0, 2).contiguous()  # [batch_size, seq_length, embedding_dim]
        return attn_output, attn_weights


class MLCDEncoderLayer(nn.Module):
    def __init__(self, config: MLCDVisionConfig):
        super().__init__()
        self.embed_dim = config.hidden_size
        self.self_attn = MLCDAttention(config)
        self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
        self.mlp = MLCDMLP(config)
        self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)

    def forward(
        self,
        hidden_states: torch.Tensor,
        position_embeddings: Tuple[torch.Tensor, torch.Tensor],
        attention_mask: Optional[torch.Tensor] = None,
        output_attentions: Optional[bool] = False,
    ) -> Tuple[torch.FloatTensor]:
        """
        Args:
            hidden_states (`torch.FloatTensor`):
                Input to the layer of shape `(batch, seq_len, embed_dim)`.
                Represents the hidden states from the previous layer or the input embeddings.
            position_embeddings (`Tuple[torch.Tensor, torch.Tensor]`):
                A tuple of two tensors, each of shape `(batch, seq_len, embed_dim)`.
                Represents absolute positional embeddings for the query and key in the attention mechanism.
            attention_mask (`torch.FloatTensor`):
                Attention mask of shape `(batch, 1, q_len, k_v_seq_len)` where padding elements are indicated by very large negative values.
            output_attentions (`bool`, *optional*, defaults to `False`):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more detail.
        """
        residual = hidden_states

        hidden_states = self.layer_norm1(hidden_states)
        hidden_states, attn_weights = self.self_attn(
            hidden_states=hidden_states,
            position_embeddings=position_embeddings,
            attention_mask=attention_mask,
            output_attentions=output_attentions,
        )
        hidden_states = residual + hidden_states

        residual = hidden_states
        hidden_states = self.layer_norm2(hidden_states)
        hidden_states = self.mlp(hidden_states)
        hidden_states = residual + hidden_states

        outputs = (hidden_states,)

        if output_attentions:
            outputs += (attn_weights,)

        return outputs


class MLCDEncoder(nn.Module):
    """
    Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
    [`MLCDEncoderLayer`].

    Args:
        config: MLCDVisionConfig
    """

    def __init__(self, config: MLCDVisionConfig):
        """Overwrite dummy `MLCDConfig` to `MLCDVisionConfig`."""
        super().__init__()
        self.config = config
        self.layers = nn.ModuleList([MLCDEncoderLayer(config) for _ in range(config.num_hidden_layers)])
        self.gradient_checkpointing = False

    @can_return_tuple
    def forward(
        self,
        inputs_embeds: torch.FloatTensor,
        position_embeddings: Tuple[torch.Tensor, torch.Tensor],
        attention_mask: Optional[torch.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, BaseModelOutput]:
        r"""
        Args:
            inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
                Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
                This is useful if you want more control over how to convert `input_ids` indices into associated vectors
                than the model's internal embedding lookup matrix.
            position_embeddings (`Tuple[torch.Tensor, torch.Tensor]`):
                A tuple of two tensors, each of shape `(batch, seq_len, embed_dim)`.
                Represents absolute positional embeddings for the query and key in the attention mechanism.
            attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
                Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
                - 1 for tokens that are **not masked**,
                - 0 for tokens that are **masked**.
                [What are attention masks?](../glossary#attention-mask)
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more detail.
            output_hidden_states (`bool`, *optional*):
                Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
                for more detail.
            return_dict (`bool`, *optional*):
                Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
        """

        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions

        encoder_states = () if output_hidden_states else None
        all_attentions = () if output_attentions else None

        hidden_states = inputs_embeds
        for idx, encoder_layer in enumerate(self.layers):
            if output_hidden_states:
                encoder_states = encoder_states + (hidden_states,)
            if self.gradient_checkpointing and self.training:
                layer_outputs = self._gradient_checkpointing_func(
                    encoder_layer.__call__,
                    hidden_states,
                    position_embeddings,
                    attention_mask,
                    output_attentions,
                )
            else:
                layer_outputs = encoder_layer(
                    hidden_states=hidden_states,
                    position_embeddings=position_embeddings,
                    attention_mask=attention_mask,
                    output_attentions=output_attentions,
                )

            hidden_states = layer_outputs[0]

            if output_attentions:
                all_attentions = all_attentions + (layer_outputs[1],)

        if output_hidden_states:
            encoder_states = encoder_states + (hidden_states,)

        if not return_dict:
            return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
        return BaseModelOutput(
            last_hidden_state=hidden_states,
            hidden_states=encoder_states,
            attentions=all_attentions,
        )


class MLCDVisionTransformer(nn.Module):
    def __init__(self, config: MLCDVisionConfig):
        super().__init__()
        self.config = config
        embed_dim = config.hidden_size

        self.embeddings = MLCDVisionEmbeddings(config)
        self.pre_layrnorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
        self.encoder = MLCDEncoder(config)
        self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
        self.vision_rotary_embedding = MLCDRotaryEmbedding(config.hidden_size // config.num_attention_heads // 2)
        self.class_pos_emb = nn.Parameter(torch.randn(1, config.hidden_size // config.num_attention_heads // 2))

    @auto_docstring
    def forward(
        self,
        pixel_values: Optional[torch.FloatTensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, BaseModelOutputWithPooling]:
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions

        if pixel_values is None:
            raise ValueError("You have to specify pixel_values")

        num_patches_height = pixel_values.shape[-2] // self.config.patch_size
        num_patches_width = pixel_values.shape[-1] // self.config.patch_size
        rotary_pos_emb = self.vision_rotary_embedding(num_patches_height, num_patches_width)
        rotary_pos_emb = rotary_pos_emb.to(self.class_pos_emb.device)
        rotary_pos_emb = torch.cat([self.class_pos_emb, rotary_pos_emb], dim=0)
        emb = torch.cat((rotary_pos_emb, rotary_pos_emb), dim=-1)
        position_embeddings = (emb.cos(), emb.sin())

        hidden_states = self.embeddings(pixel_values)
        hidden_states = self.pre_layrnorm(hidden_states)

        encoder_outputs = self.encoder(
            inputs_embeds=hidden_states,
            position_embeddings=position_embeddings,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        last_hidden_state = encoder_outputs[0]
        pooled_output = last_hidden_state[:, 0, :]
        pooled_output = self.post_layernorm(pooled_output)

        if not return_dict:
            return (last_hidden_state, pooled_output) + encoder_outputs[1:]

        return BaseModelOutputWithPooling(
            last_hidden_state=last_hidden_state,
            pooler_output=pooled_output,
            hidden_states=encoder_outputs.hidden_states,
            attentions=encoder_outputs.attentions,
        )


@auto_docstring
class MLCDPreTrainedModel(PreTrainedModel):
    config_class = MLCDVisionConfig
    base_model_prefix = "mlcd"
    supports_gradient_checkpointing = True
    _supports_flash_attn_2 = True
    _supports_sdpa = True

    def _init_weights(self, module):
        """Initialize the weights"""
        factor = self.config.initializer_factor
        if isinstance(module, MLCDVisionEmbeddings):
            factor = self.config.initializer_factor
            nn.init.normal_(module.class_embedding, mean=0.0, std=module.embed_dim**-0.5 * factor)
            nn.init.normal_(module.patch_embedding.weight, std=module.config.initializer_range * factor)
        elif isinstance(module, MLCDAttention):
            factor = self.config.initializer_factor
            in_proj_std = (module.embed_dim**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor
            out_proj_std = (module.embed_dim**-0.5) * factor
            nn.init.normal_(module.q_proj.weight, std=in_proj_std)
            nn.init.normal_(module.k_proj.weight, std=in_proj_std)
            nn.init.normal_(module.v_proj.weight, std=in_proj_std)
            nn.init.normal_(module.out_proj.weight, std=out_proj_std)
        elif isinstance(module, MLCDMLP):
            factor = self.config.initializer_factor
            in_proj_std = (module.config.hidden_size**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor
            fc_std = (2 * module.config.hidden_size) ** -0.5 * factor
            nn.init.normal_(module.fc1.weight, std=fc_std)
            nn.init.normal_(module.fc2.weight, std=in_proj_std)
        elif isinstance(module, MLCDVisionTransformer):
            factor = self.config.initializer_factor
            pos_emb_std = (module.config.hidden_size // module.config.num_attention_heads // 2) ** -0.5 * factor
            nn.init.normal_(module.class_pos_emb, mean=0.0, std=pos_emb_std)
        elif isinstance(module, nn.LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)
        elif isinstance(module, nn.Linear) and module.bias is not None:
            module.bias.data.zero_()


@auto_docstring(
    custom_intro="""
    The vision model from M_L_C_D without any head or projection on top.
    """
)
class MLCDVisionModel(MLCDPreTrainedModel):
    config_class = MLCDVisionConfig
    main_input_name = "pixel_values"
    _no_split_modules = ["MLCDEncoderLayer"]

    def __init__(self, config: MLCDVisionConfig):
        super().__init__(config)
        self.vision_model = MLCDVisionTransformer(config)
        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self) -> nn.Module:
        return self.vision_model.embeddings.patch_embedding

    @auto_docstring
    def forward(
        self,
        pixel_values: Optional[torch.FloatTensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, BaseModelOutputWithPooling]:
        r"""
        Example:

        ```python
        >>> import requests
        >>> from PIL import Image
        >>> from transformers import AutoProcessor, MLCDVisionModel
        >>> model = MLCDVisionModel.from_pretrained("DeepGlint-AI/mlcd-vit-bigG-patch14-448")
        >>> processor = AutoProcessor.from_pretrained("DeepGlint-AI/mlcd-vit-bigG-patch14-448")

        >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
        >>> image = Image.open(requests.get(url, stream=True).raw)
        >>> inputs = processor(images=image, return_tensors="pt")

        >>> with torch.no_grad():
        ...     outputs = model(**inputs, output_attentions=True)

        >>> features = outputs.last_hidden_state
        >>> print(f"Extracted features shape: {features.shape}")
        >>> print(f"Number of attention layers: {len(outputs.attentions)}")
        >>> print(f"Attention shape: {outputs.attentions[0].shape}")
        ```"""
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions

        return self.vision_model(
            pixel_values=pixel_values,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )


__all__ = ["MLCDPreTrainedModel", "MLCDVisionModel"]
