
    fTh                         S r SSKJr  SSKJr  SSKJr  SSKJr  \R                  " \
5      r " S S\5      r " S	 S
\5      rSS
/rg)zLongT5 model configuration    )Mapping   )PretrainedConfig)OnnxSeq2SeqConfigWithPast)loggingc                   p   ^  \ rS rSrSrSrS/rSSSSS	.r                    SU 4S
 jjrSr	U =r
$ )LongT5Config   a>  
This is the configuration class to store the configuration of a [`LongT5Model`] or a [`FlaxLongT5Model`]. It is
used to instantiate a LongT5 model according to the specified arguments, defining the model architecture.
Instantiating a configuration with the defaults will yield a similar configuration to that of the LongT5
[google/long-t5-local-base](https://huggingface.co/google/long-t5-local-base) architecture.

Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.

Arguments:
    vocab_size (`int`, *optional*, defaults to 32128):
        Vocabulary size of the LongT5 model. Defines the number of different tokens that can be represented by the
        `inputs_ids` passed when calling [`LongT5Model`].
    d_model (`int`, *optional*, defaults to 512):
        Size of the encoder layers and the pooler layer.
    d_kv (`int`, *optional*, defaults to 64):
        Size of the key, query, value projections per attention head. `d_kv` has to be equal to `d_model //
        num_heads`.
    d_ff (`int`, *optional*, defaults to 2048):
        Size of the intermediate feed forward layer in each `LongT5Block`.
    num_layers (`int`, *optional*, defaults to 6):
        Number of hidden layers in the Transformer encoder.
    num_decoder_layers (`int`, *optional*):
        Number of hidden layers in the Transformer decoder. Will use the same value as `num_layers` if not set.
    num_heads (`int`, *optional*, defaults to 8):
        Number of attention heads for each attention layer in the Transformer encoder.
    local_radius (`int`, *optional*, defaults to 127)
        Number of tokens to the left/right for each token to locally self-attend in a local attention mechanism.
    global_block_size (`int`, *optional*, defaults to 16)
        Length of blocks an input sequence is divided into for a global token representation. Used only for
        `encoder_attention_type = "transient-global"`.
    relative_attention_num_buckets (`int`, *optional*, defaults to 32):
        The number of buckets to use for each attention layer.
    relative_attention_max_distance (`int`, *optional*, defaults to 128):
        The maximum distance of the longer sequences for the bucket separation.
    dropout_rate (`float`, *optional*, defaults to 0.1):
        The ratio for all dropout layers.
    layer_norm_eps (`float`, *optional*, defaults to 1e-6):
        The epsilon used by the layer normalization layers.
    initializer_factor (`float`, *optional*, defaults to 1):
        A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
        testing).
    feed_forward_proj (`string`, *optional*, defaults to `"relu"`):
        Type of feed forward layer to be used. Should be one of `"relu"` or `"gated-gelu"`. LongT5v1.1 uses the
        `"gated-gelu"` feed forward projection. Original LongT5 implementation uses `"gated-gelu"`.
    encoder_attention_type (`string`, *optional*, defaults to `"local"`):
        Type of encoder attention to be used. Should be one of `"local"` or `"transient-global"`, which are
        supported by LongT5 implementation.
    use_cache (`bool`, *optional*, defaults to `True`):
        Whether or not the model should return the last key/values attentions (not used by all models).
longt5past_key_valuesd_model	num_heads
num_layersd_kv)hidden_sizenum_attention_headsnum_hidden_layershead_dimc                   > Xl         X l        X0l        X@l        XPl        Ub  UOU R                  U l        Xpl        Xl        Xl        Xl	        Xl
        Xl        Xl        Xl        Xl        UU l        UU l        U R                  R#                  S5      nUS   U l        US   S:H  U l        [)        U5      S:  a	  US   S:w  d  [)        U5      S:  a  [+        SU S35      eUS	:X  a  S
U l        [,        TU ]\  " SUUUS.UD6  g )N-r   gated      z`feed_forward_proj`: z is not a valid activation function of the dense layer. Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. 'gated-gelu' or 'relu'z
gated-gelugelu_new)pad_token_ideos_token_idis_encoder_decoder )
vocab_sizer   r   d_ffr   num_decoder_layersr   local_radiusglobal_block_sizerelative_attention_num_bucketsrelative_attention_max_distancedropout_ratelayer_norm_epsiloninitializer_factorfeed_forward_projencoder_attention_type	use_cachesplitdense_act_fnis_gated_actlen
ValueErrorsuper__init__)selfr    r   r   r!   r   r"   r   r#   r$   r%   r&   r'   r(   r)   r*   r   r+   r,   r   r   kwargsact_info	__class__s                          g/var/www/auris/envauris/lib/python3.13/site-packages/transformers/models/longt5/configuration_longt5.pyr3   LongT5Config.__init__Y   s%   0 %		$8J8V"4\`\k\k"(!2.L+/N,("4"4!2&<#"))//4$RL$QK72x=1!!73x=1;L'(9': ;) )  , *D 	
%%1	
 		
    )r!   r   r   r.   r'   r+   r*   r$   r)   r/   r(   r#   r"   r   r   r&   r%   r,   r    )i}  i   @   i      N                g?gư>g      ?reluTlocalTr   r   )__name__
__module____qualname____firstlineno____doc__
model_typekeys_to_ignore_at_inferenceattribute_mapr3   __static_attributes____classcell__)r7   s   @r8   r	   r	      st    2h J#4"5 *)	M ')(+ &+?
 ?
r:   r	   c                   X    \ rS rSr\S\\\\\4   4   4S j5       r\S\4S j5       r	Sr
g)LongT5OnnxConfig   returnc                     SSS.SSS.S.nU R                   (       a  SUS   S'   SS0US	'   SS
S.US'   OSSS.US	'   SSS.US'   U R                   (       a  U R                  USS9  U$ )Nbatchencoder_sequence)r   r   )	input_idsattention_maskz past_encoder_sequence + sequencerV   r   r   decoder_input_idsz past_decoder_sequence + sequencedecoder_attention_maskdecoder_sequenceinputs)	direction)use_pastfill_with_past_key_values_)r4   common_inputss     r8   rZ   LongT5OnnxConfig.inputs   s     %);<").@A
 ==1SM*+A.23WM-.:AFh6iM235<AS1TM-.:AFX6YM23==++MX+Nr:   c                     g)N   r   )r4   s    r8   default_onnx_opset#LongT5OnnxConfig.default_onnx_opset   s    r:   r   N)rD   rE   rF   rG   propertyr   strintrZ   rb   rL   r   r:   r8   rO   rO      sI    WS#X%6 67  $ C  r:   rO   N)rH   typingr   configuration_utilsr   onnxr   utilsr   
get_loggerrD   loggerr	   rO   __all__r   r:   r8   <module>rn      sR    !  3 -  
		H	%}
# }
@0 2 -
.r:   