
    fThD"                         S r SSKJr  SSKJrJrJrJr  SSKJ	r	  SSK
Jr  SSKJr  \(       a  SSKJrJr  \R"                  " \5      r " S	 S
\	5      r " S S\5      rS
S/rg)zOpenAI ImageGPT configuration    OrderedDict)TYPE_CHECKINGAnyMappingOptional   )PretrainedConfig)
OnnxConfig)logging)FeatureExtractionMixin
TensorTypec                   j   ^  \ rS rSrSrSrS/rSSSSS	.r                 SU 4S
 jjrSr	U =r
$ )ImageGPTConfig   a  
This is the configuration class to store the configuration of a [`ImageGPTModel`] or a [`TFImageGPTModel`]. It is
used to instantiate a GPT-2 model according to the specified arguments, defining the model architecture.
Instantiating a configuration with the defaults will yield a similar configuration to that of the ImageGPT
[openai/imagegpt-small](https://huggingface.co/openai/imagegpt-small) architecture.

Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.


Args:
    vocab_size (`int`, *optional*, defaults to 512):
        Vocabulary size of the GPT-2 model. Defines the number of different tokens that can be represented by the
        `inputs_ids` passed when calling [`ImageGPTModel`] or [`TFImageGPTModel`].
    n_positions (`int`, *optional*, defaults to 32*32):
        The maximum sequence length that this model might ever be used with. Typically set this to something large
        just in case (e.g., 512 or 1024 or 2048).
    n_embd (`int`, *optional*, defaults to 512):
        Dimensionality of the embeddings and hidden states.
    n_layer (`int`, *optional*, defaults to 24):
        Number of hidden layers in the Transformer encoder.
    n_head (`int`, *optional*, defaults to 8):
        Number of attention heads for each attention layer in the Transformer encoder.
    n_inner (`int`, *optional*, defaults to None):
        Dimensionality of the inner feed-forward layers. `None` will set it to 4 times n_embd
    activation_function (`str`, *optional*, defaults to `"quick_gelu"`):
        Activation function (can be one of the activation functions defined in src/transformers/activations.py).
        Defaults to "quick_gelu".
    resid_pdrop (`float`, *optional*, defaults to 0.1):
        The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
    embd_pdrop (`int`, *optional*, defaults to 0.1):
        The dropout ratio for the embeddings.
    attn_pdrop (`float`, *optional*, defaults to 0.1):
        The dropout ratio for the attention.
    layer_norm_epsilon (`float`, *optional*, defaults to 1e-5):
        The epsilon to use in the layer normalization layers.
    initializer_range (`float`, *optional*, defaults to 0.02):
        The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
    scale_attn_weights (`bool`, *optional*, defaults to `True`):
        Scale attention weights by dividing by sqrt(hidden_size)..
    use_cache (`bool`, *optional*, defaults to `True`):
        Whether or not the model should return the last key/values attentions (not used by all models).
    scale_attn_by_inverse_layer_idx (`bool`, *optional*, defaults to `False`):
        Whether to additionally scale attention weights by `1 / layer_idx + 1`.
    reorder_and_upcast_attn (`bool`, *optional*, defaults to `False`):
        Whether to scale keys (K) prior to computing attention (dot-product) and upcast attention
        dot-product/softmax to float() when training with mixed precision.

Example:

```python
>>> from transformers import ImageGPTConfig, ImageGPTModel

>>> # Initializing a ImageGPT configuration
>>> configuration = ImageGPTConfig()

>>> # Initializing a model (with random weights) from the configuration
>>> model = ImageGPTModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config
```imagegptpast_key_valuesn_embdn_positionsn_headn_layer)hidden_sizemax_position_embeddingsnum_attention_headsnum_hidden_layersc                    > Xl         X l        X0l        X@l        XPl        X`l        Xpl        Xl        Xl        Xl	        Xl
        Xl        Xl        Xl        UU l        UU l        Xl        ["        TU ]H  " SSU0UD6  g )Ntie_word_embeddings )
vocab_sizer   r   r   r   n_inneractivation_functionresid_pdrop
embd_pdrop
attn_pdroplayer_norm_epsiloninitializer_rangescale_attn_weights	use_cachescale_attn_by_inverse_layer_idxreorder_and_upcast_attnr   super__init__)selfr   r   r   r   r   r    r!   r"   r#   r$   r%   r&   r'   r(   r   r)   r*   kwargs	__class__s                      k/var/www/auris/envauris/lib/python3.13/site-packages/transformers/models/imagegpt/configuration_imagegpt.pyr,   ImageGPTConfig.__init__h   s}    * %&#6 &$$"4!2"4"/N,'>$#6 K-@KFK    )r!   r$   r#   r&   r%   r   r   r    r   r   r*   r"   r)   r'   r   r(   r   )i  i   i         N
quick_gelu皙?r6   r6   gh㈵>g{Gz?TTFFF)__name__
__module____qualname____firstlineno____doc__
model_typekeys_to_ignore_at_inferenceattribute_mapr,   __static_attributes____classcell__)r/   s   @r0   r   r      sm    =~ J#4"5#0'&	M (!(- %%'L 'Lr2   r   c                       \ rS rSr\S\\\\\4   4   4S j5       r       SSSS\S\S	\	S
\
S   S\S\S\S\\\4   4S jjrSrg)ImageGPTOnnxConfig   returnc                 $    [        SSSS.4/5      $ )N	input_idsbatchsequence)r      r   )r-   s    r0   inputsImageGPTOnnxConfig.inputs   s!    'j9:
 	
r2   Npreprocessorr   
batch_size
seq_lengthis_pair	frameworkr   num_channelsimage_widthimage_heightc	                 H    U R                  X&X5      n	[        U" XS95      n
U
$ )a  
Generate inputs to provide to the ONNX exporter for the specific framework

Args:
    preprocessor ([`PreTrainedTokenizerBase`] or [`FeatureExtractionMixin`]):
        The preprocessor associated with this model configuration.
    batch_size (`int`, *optional*, defaults to -1):
        The batch size to export the model for (-1 means dynamic axis).
    num_choices (`int`, *optional*, defaults to -1):
        The number of candidate answers provided for multiple choice task (-1 means dynamic axis).
    seq_length (`int`, *optional*, defaults to -1):
        The sequence length to export the model for (-1 means dynamic axis).
    is_pair (`bool`, *optional*, defaults to `False`):
        Indicate if the input is a pair (sentence 1, sentence 2)
    framework (`TensorType`, *optional*, defaults to `None`):
        The framework (PyTorch or TensorFlow) that the tokenizer will generate tensors for.
    num_channels (`int`, *optional*, defaults to 3):
        The number of channels of the generated images.
    image_width (`int`, *optional*, defaults to 40):
        The width of the generated images.
    image_height (`int`, *optional*, defaults to 40):
        The height of the generated images.

Returns:
    Mapping[str, Tensor] holding the kwargs to provide to the model's forward function
)imagesreturn_tensors)_generate_dummy_imagesdict)r-   rL   rM   rN   rO   rP   rQ   rR   rS   input_imagerJ   s              r0   generate_dummy_inputs(ImageGPTOnnxConfig.generate_dummy_inputs   s+    L 11*Lfl+PQr2   r   )rI   FNr	       r]   )r7   r8   r9   r:   propertyr   strintrJ   boolr   r   rZ   r?   r   r2   r0   rB   rB      s    
WS#X%6 67 
 
 ,0).) ) 	)
 ) L)) ) ) ) 
c	) )r2   rB   N)r;   collectionsr   typingr   r   r   r   configuration_utilsr
   onnxr   utilsr    r   r   
get_loggerr7   loggerr   rB   __all__r   r2   r0   <module>rk      s`    $ # 8 8 3   6			H	%pL% pLf2 2j 1
2r2   