# coding=utf-8
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch Idefics model."""

from dataclasses import dataclass
from typing import Any, Callable, Dict, List, Optional, Tuple, Union

import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from torch import nn

from ...activations import ACT2FN
from ...cache_utils import Cache, DynamicCache
from ...generation import GenerationMixin
from ...modeling_attn_mask_utils import AttentionMaskConverter
from ...modeling_flash_attention_utils import FlashAttentionKwargs
from ...modeling_outputs import ModelOutput
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PretrainedConfig, PreTrainedModel
from ...processing_utils import Unpack
from ...pytorch_utils import ALL_LAYERNORM_LAYERS
from ...utils import LossKwargs, auto_docstring, can_return_tuple, is_torch_flex_attn_available, logging
from .configuration_idefics import IdeficsConfig
from .perceiver import IdeficsPerceiverResampler
from .vision import IdeficsVisionEmbeddings, IdeficsVisionTransformer


if is_torch_flex_attn_available():
    from torch.nn.attention.flex_attention import BlockMask

    from ...integrations.flex_attention import make_flex_block_causal_mask


logger = logging.get_logger(__name__)


@dataclass
class IdeficsBaseModelOutputWithPast(ModelOutput):
    """
    Base class for Idefics model's outputs that may also contain a past key/values (to speed up sequential decoding).

    Args:
        last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
            Sequence of hidden-states at the output of the last layer of the model.

            If `past_key_values` is used only the last hidden-state of the sequences of shape `(batch_size, 1,
            hidden_size)` is output.
        past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
            Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
            `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and optionally if
            `config.is_encoder_decoder=True` 2 additional tensors of shape `(batch_size, num_heads,
            encoder_sequence_length, embed_size_per_head)`.

            Contains pre-computed hidden-states (key and values in the self-attention blocks and optionally if
            `config.is_encoder_decoder=True` in the cross-attention blocks) that can be used (see `past_key_values`
            input) to speed up sequential decoding.
        hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
            one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
        attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
            Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
            sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.
        image_hidden_states (`tuple(torch.FloatTensor)`, *optional*):
            Tuple of `torch.FloatTensor` (one for the output of the image embeddings, `(batch_size, num_images,
            sequence_length, hidden_size)`.

            image_hidden_states of the model produced by the vision encoder, and optionally by the perceiver
    """

    last_hidden_state: Optional[torch.FloatTensor] = None
    past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
    hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    attentions: Optional[Tuple[torch.FloatTensor]] = None
    image_hidden_states: Optional[Tuple[torch.FloatTensor]] = None


@dataclass
class IdeficsCausalLMOutputWithPast(ModelOutput):
    """
    Base class for Idefics causal language model (or autoregressive) outputs.

    Args:
        loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
            Language modeling loss (for next-token prediction).
        logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
            Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
        past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
            Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
            `(batch_size, num_heads, sequence_length, embed_size_per_head)`)

            Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
            `past_key_values` input) to speed up sequential decoding.
        hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
            one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
        attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
            Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
            sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.
        image_hidden_states (`tuple(torch.FloatTensor)`, *optional*):
            Tuple of `torch.FloatTensor` (one for the output of the image embeddings, `(batch_size, num_images,
            sequence_length, hidden_size)`.

            image_hidden_states of the model produced by the vision encoder, and optionally by the perceiver
    """

    loss: Optional[torch.FloatTensor] = None
    logits: Optional[torch.FloatTensor] = None
    past_key_values: Optional[List[torch.FloatTensor]] = None
    hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    attentions: Optional[Tuple[torch.FloatTensor]] = None
    image_hidden_states: Optional[Tuple[torch.FloatTensor]] = None


def expand_inputs_for_generation(
    input_ids,
    expand_size=1,
    is_encoder_decoder=False,
    attention_mask=None,
    encoder_outputs=None,
    **model_kwargs,
):
    expanded_return_idx = (
        torch.arange(input_ids.shape[0]).view(-1, 1).repeat(1, expand_size).view(-1).to(input_ids.device)
    )
    input_ids = input_ids.index_select(0, expanded_return_idx)
    model_kwargs["pixel_values"] = model_kwargs.get("pixel_values", None)
    model_kwargs["image_encoder_embeddings"] = model_kwargs.get("image_encoder_embeddings", None)
    model_kwargs["perceiver_embeddings"] = model_kwargs.get("perceiver_embeddings", None)
    model_kwargs["image_attention_mask"] = model_kwargs.get("image_attention_mask", None)

    if "token_type_ids" in model_kwargs:
        token_type_ids = model_kwargs["token_type_ids"]
        model_kwargs["token_type_ids"] = token_type_ids.index_select(0, expanded_return_idx)

    if attention_mask is not None:
        model_kwargs["attention_mask"] = attention_mask.index_select(0, expanded_return_idx)

    if model_kwargs["image_attention_mask"] is not None:
        model_kwargs["image_attention_mask"] = model_kwargs["image_attention_mask"].index_select(
            0, expanded_return_idx
        )

    if model_kwargs["pixel_values"] is not None:
        model_kwargs["pixel_values"] = model_kwargs["pixel_values"].index_select(0, expanded_return_idx)

    elif model_kwargs["image_encoder_embeddings"] is not None:
        model_kwargs["image_encoder_embeddings"] = model_kwargs["image_encoder_embeddings"].index_select(
            0, expanded_return_idx
        )

    elif model_kwargs["perceiver_embeddings"] is not None:
        model_kwargs["perceiver_embeddings"] = model_kwargs["perceiver_embeddings"].index_select(
            0, expanded_return_idx
        )

    return input_ids, model_kwargs


def freeze_model(model, module_exceptions=[]):
    mapping = {
        "LayerNorm": nn.LayerNorm,
        "Linear": nn.Linear,
        "Embedding": nn.Embedding,
    }
    module_exceptions_mapped = [mapping[m] for m in module_exceptions]
    for module in model.modules():
        if module_exceptions and any(isinstance(module, t) for t in module_exceptions_mapped):
            module.requires_grad_(True)  # Explicitly setting it to true to avoid any mistakes
        else:
            module.requires_grad_(False)
    return model


class IdeficsDecoupledEmbedding(nn.Embedding):
    # Derived from https://pytorch.org/docs/stable/_modules/torch/nn/modules/sparse.html#Embedding
    """
    Implements a decoupling of parameters to allow freezing (or not) a subset of the embeddings. In practise, the
    regular `weight` can be trained or frozen (i.e. `partially_freeze=True`), and if `num_additional_embeddings` > 0,
    then it will create `num_additional_embeddings` additional parameters that are always trained. If
    `num_additional_embeddings=0`, then the module defaults back to the regular behavior of `nn.Embedding`.
    """

    def __init__(
        self,
        num_embeddings,
        num_additional_embeddings,
        embedding_dim,
        partially_freeze: Optional[bool] = False,
        device=None,
        dtype=None,
        padding_idx=None,
        **kwargs,
    ) -> None:
        """
        Args:
            num_embeddings (`int`):
                Size of the dictionary of embeddings
            num_additional_embeddings (`int`):
                Number of additional embeddings. Only useful when you `partially_freeze=True`.
            embedding_dim (`int`):
                The size of each embedding vector
            partially_freeze: (`bool`, *optional*, defaults to `False`):
                If `True`, the regular `weight` will be frozen. `additional_weight` is never frozen.
            padding_idx (`int`, *optional*):
                The padding index (needs to be less than num_embeddings)

        Note: there are a lot of other parameters to initialize a standard `nn.Embedding` such as `padding_idx`,
        `max_norm` or `norm_type`. We are not supporting these.
        """
        if padding_idx is not None and padding_idx > num_embeddings:
            raise ValueError(f"padding_idx must be within num_embeddings. Got {padding_idx} and {num_embeddings}")
        super().__init__(
            num_embeddings=num_embeddings,
            embedding_dim=embedding_dim,
            device=device,
            dtype=dtype,
            padding_idx=padding_idx,
            **kwargs,
        )
        self.num_embeddings = num_embeddings
        self.padding_idx = padding_idx
        self.num_additional_embeddings = num_additional_embeddings
        self.partially_freeze = partially_freeze

        if partially_freeze:
            self.weight.requires_grad_(False)

        if self.num_additional_embeddings > 0:
            self.additional_embedding = nn.Embedding(
                num_embeddings=self.num_additional_embeddings,
                embedding_dim=embedding_dim,
                device=device,
                dtype=dtype,
            )

    def forward(self, input_ids):
        """
        we have 2 embeddings, with different indices - one pretrained self.weight and another
        self.additional_embedding.weight that is being trained.

        in order to make a lookup of the input ids, we:
        1. find out the indices of the entries belonging to the 2nd embedding
        2. extract those values while subtracting the size of the first embedding (num_embeddings), since the 2nd
           embedding starts from 0 and not num_embeddings
        3. perform the 2nd embedding lookup
        4. now we handle the 1st embedding, we overwrite indices belonging to the 2nd embedding with a padding index
        5. perform the 1st embedding lookup
        6. now we overwrite the values in the 1st embedding lookup with the values of the 2nd embedding lookup

        note: for the 1st embedding lookup we could have looked up only the low indices and not do the padding, but
        then we have to create a new tensor and populate it with 2 tensors that are spread out across various indices -
        i.e. not a simple concat - I haven't benchmarked the complex case if it's any faster, given that seqlens are
        usually relatively short it's probably not faster or if faster not by much - but might be a good idea to
        measure.

        """
        if self.num_additional_embeddings == 0:
            return F.embedding(input_ids, self.weight)

        # Clone so that we don't modify the original input_ids later on
        input_ids = input_ids.clone()
        additional_vocab_indices = torch.where(input_ids >= self.num_embeddings)
        input_ids_additional_vocab = input_ids[additional_vocab_indices]
        additional_embeddings = self.additional_embedding(input_ids_additional_vocab - self.num_embeddings)

        # for successful lookup replace input_ids with 0, the results of these will be discarded anyway
        input_ids[additional_vocab_indices] = 0
        full_vector = F.embedding(input_ids, self.weight)

        # overwrite the records with high indices
        full_vector[additional_vocab_indices] = additional_embeddings

        return full_vector

    def extra_repr(self) -> str:
        return "num_embeddings={}, num_additional_embeddings={}, embedding_dim={}, partially_freeze={}".format(
            self.num_embeddings,
            self.num_additional_embeddings,
            self.embedding_dim,
            self.partially_freeze,
        )


class IdeficsDecoupledLinear(nn.Linear):
    # Derived from https://pytorch.org/docs/stable/_modules/torch/nn/modules/linear.html#Linear
    """
    Implements a decoupling of parameters to allow freezing (or not) a subset of the parameters. In practise, the
    regular `weight` can be trained or frozen (i.e. `partially_freeze=True`), and if `out_additional_features` > 0,
    then it will create `out_additional_features * in_features` additional parameters that are always trained. If
    `out_additional_features=0`, then the module defaults back to the regular behavior of `nn.Linear`.
    """

    def __init__(
        self,
        in_features: int,
        out_features: int,
        out_additional_features: int = 0,
        bias: bool = True,
        partially_freeze: bool = True,
        device=None,
        dtype=None,
    ) -> None:
        """
        out_additional_features: int. Number of additional trainable dimensions. Only makes sense when
        `partially_freeze=True`. partially_freeze: bool. If True, the regular `weight` will be frozen and extra
        parameters (if any) will be trainable. If False, default to the regular behavior of nn.Linear.
        """
        super().__init__(in_features, out_features, bias, device, dtype)
        self.out_additional_features = out_additional_features
        self.partially_freeze = partially_freeze

        self.in_features = in_features
        self.out_features = out_features

        if partially_freeze:
            self.weight.requires_grad_(False)
            if bias:
                self.bias.requires_grad_(False)

        if out_additional_features > 0:
            self.additional_fc = nn.Linear(
                in_features=in_features,
                out_features=out_additional_features,
                bias=bias,
                device=device,
                dtype=dtype,
            )

    def forward(self, input: torch.Tensor) -> torch.Tensor:
        output = F.linear(input, self.weight, self.bias)

        if self.out_additional_features > 0:
            additional_features = self.additional_fc(input)
            output = torch.cat((output, additional_features), -1)

        return output

    def extra_repr(self) -> str:
        """Overwriting `nn.Linear.extra_repr` to include new parameters."""
        return "in_features={}, out_features={}, out_additional_features={}, bias={}, partially_freeze={}".format(
            self.in_features,
            self.out_features,
            self.out_additional_features,
            self.bias is not None,
            self.partially_freeze,
        )


# this was adapted from LlamaRMSNorm
class IdeficsRMSNorm(nn.Module):
    def __init__(self, hidden_size, eps=1e-6):
        """
        IdeficsRMSNorm is equivalent to T5LayerNorm
        """
        super().__init__()
        self.weight = nn.Parameter(torch.ones(hidden_size))
        self.variance_epsilon = eps

    def forward(self, hidden_states):
        variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
        hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)

        # convert into half-precision if necessary
        if self.weight.dtype in [torch.float16, torch.bfloat16]:
            hidden_states = hidden_states.to(self.weight.dtype)

        return self.weight * hidden_states

    def extra_repr(self):
        return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"


ALL_LAYERNORM_LAYERS.append(IdeficsRMSNorm)


# this was adapted from LlamaRotaryEmbedding
class IdeficsEmbedding(torch.nn.Module):
    def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
        super().__init__()

        self.dim = dim
        self.max_position_embeddings = max_position_embeddings
        self.base = base
        inv_freq = 1.0 / (
            self.base
            ** (torch.arange(0, self.dim, 2, dtype=torch.int64).to(device=device, dtype=torch.float) / self.dim)
        )
        self.register_buffer("inv_freq", inv_freq, persistent=False)

        # Build here to make `torch.jit.trace` work.
        self._set_cos_sin_cache(
            seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
        )

    def _set_cos_sin_cache(self, seq_len, device, dtype):
        self.max_seq_len_cached = seq_len
        t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq)

        freqs = torch.einsum("i,j->ij", t, self.inv_freq)
        # Different from paper, but it uses a different permutation in order to obtain the same calculation
        emb = torch.cat((freqs, freqs), dim=-1)
        self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
        self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)

    def forward(self, x, seq_len=None):
        # x: [bs, num_attention_heads, seq_len, head_size]
        if seq_len > self.max_seq_len_cached:
            self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)

        return (
            self.cos_cached[:seq_len].to(dtype=x.dtype),
            self.sin_cached[:seq_len].to(dtype=x.dtype),
        )


def rotate_half(x):
    """Rotates half the hidden dims of the input."""
    x1 = x[..., : x.shape[-1] // 2]
    x2 = x[..., x.shape[-1] // 2 :]
    return torch.cat((-x2, x1), dim=-1)


def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
    """Applies Rotary Position Embedding to the query and key tensors.

    Args:
        q (`torch.Tensor`): The query tensor.
        k (`torch.Tensor`): The key tensor.
        cos (`torch.Tensor`): The cosine part of the rotary embedding.
        sin (`torch.Tensor`): The sine part of the rotary embedding.
        position_ids (`torch.Tensor`):
            The position indices of the tokens corresponding to the query and key tensors. For example, this can be
            used to pass offsetted position ids when working with a KV-cache.
        unsqueeze_dim (`int`, *optional*, defaults to 1):
            The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
            sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
            that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
            k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
            cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
            the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
    Returns:
        `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
    """
    cos = cos[position_ids].unsqueeze(unsqueeze_dim)
    sin = sin[position_ids].unsqueeze(unsqueeze_dim)
    q_embed = (q * cos) + (rotate_half(q) * sin)
    k_embed = (k * cos) + (rotate_half(k) * sin)
    return q_embed, k_embed


# this was adapted from LlamaMLP
class IdeficsMLP(nn.Module):
    def __init__(
        self,
        hidden_size: int,
        intermediate_size: int,
        hidden_act: str,
    ):
        super().__init__()
        self.gate_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
        self.down_proj = nn.Linear(intermediate_size, hidden_size, bias=False)
        self.up_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
        self.act_fn = ACT2FN[hidden_act]

    def forward(self, x):
        return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))


# Copied from transformers.models.siglip.modeling_siglip.eager_attention_forward
def eager_attention_forward(
    module: nn.Module,
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
    attention_mask: Optional[torch.Tensor],
    scaling: float,
    dropout: float = 0.0,
    **kwargs,
):
    attn_weights = torch.matmul(query, key.transpose(-1, -2)) * scaling
    if attention_mask is not None:
        attn_weights = attn_weights + attention_mask

    attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
    attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)

    attn_output = torch.matmul(attn_weights, value)
    attn_output = attn_output.transpose(1, 2).contiguous()

    return attn_output, attn_weights


# this was adapted from LlamaAttention
class IdeficsAttention(nn.Module):
    """Multi-headed attention from 'Attention Is All You Need' paper"""

    def __init__(
        self,
        hidden_size: int,
        num_heads: int,
        dropout: float = 0.0,
        is_cross_attention: bool = False,
        config: PretrainedConfig = None,
        qk_layer_norms: bool = False,
        layer_idx: Optional[int] = None,
    ):
        super().__init__()
        self.config = config
        self.hidden_size = hidden_size
        self.num_heads = num_heads
        self.head_dim = hidden_size // num_heads
        self.dropout = dropout
        self.is_causal = True
        self.scaling = self.head_dim**-0.5

        self.layer_idx = layer_idx
        if layer_idx is None:
            logger.warning_once(
                f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
                "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
                "when creating this class."
            )

        if (self.head_dim * num_heads) != self.hidden_size:
            raise ValueError(
                f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
                f" and `num_heads`: {num_heads})."
            )

        self.is_cross_attention = is_cross_attention

        if not hasattr(nn.functional, "scaled_dot_product_attention"):
            raise ValueError("this model requires pytorch 2.0 or higher")

        if self.is_cross_attention:
            kv_input_dim = (
                self.hidden_size if not hasattr(config.vision_config, "embed_dim") else config.vision_config.embed_dim
            )
            self.q_proj = nn.Linear(
                self.hidden_size,
                num_heads * self.head_dim,
                bias=False,
            )
            self.k_proj = nn.Linear(kv_input_dim, num_heads * self.head_dim, bias=False)
            self.v_proj = nn.Linear(
                kv_input_dim,
                num_heads * self.head_dim,
                bias=False,
            )
        else:
            self.q_proj = nn.Linear(
                self.hidden_size,
                num_heads * self.head_dim,
                bias=False,
            )
            self.k_proj = nn.Linear(
                self.hidden_size,
                num_heads * self.head_dim,
                bias=False,
            )
            self.v_proj = nn.Linear(
                self.hidden_size,
                num_heads * self.head_dim,
                bias=False,
            )
        self.o_proj = nn.Linear(
            num_heads * self.head_dim,
            hidden_size,
            bias=False,
        )
        self.rotary_emb = IdeficsEmbedding(self.head_dim)

        self.qk_layer_norms = qk_layer_norms
        if self.qk_layer_norms:
            self.q_layer_norm = IdeficsRMSNorm(self.head_dim, eps=config.rms_norm_eps)
            self.k_layer_norm = IdeficsRMSNorm(self.head_dim, eps=config.rms_norm_eps)

    def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
        return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()

    def forward(
        self,
        hidden_states: torch.Tensor,
        key_value_states: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_value: Optional[Tuple[torch.Tensor]] = None,
        output_attentions: bool = False,
        use_cache: bool = False,
        cache_position: Optional[torch.LongTensor] = None,
        **kwargs,
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
        # if key_value_states are provided this layer is used as a cross-attention layer
        is_cross_attention = self.is_cross_attention or key_value_states is not None

        bsz, q_len, _ = hidden_states.size()

        query_states = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
        if not is_cross_attention:
            key_states = self.k_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
            value_states = self.v_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
        else:
            _, kv_len, _ = key_value_states.size()  # Note that, in this case, `kv_len` == `kv_seq_len`
            key_states = self.k_proj(key_value_states).view(bsz, kv_len, self.num_heads, self.head_dim).transpose(1, 2)
            value_states = (
                self.v_proj(key_value_states).view(bsz, kv_len, self.num_heads, self.head_dim).transpose(1, 2)
            )

        kv_seq_len = key_states.shape[-2]
        if past_key_value is not None:
            kv_seq_len += cache_position[0]

        if not is_cross_attention:
            cos, sin = self.rotary_emb(value_states, seq_len=max(kv_seq_len, q_len))
            query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
        # [bsz, nh, t, hd]

        if past_key_value is not None:
            # sin and cos are specific to RoPE models; cache_position needed for the static cache
            cache_kwargs = {"cache_position": cache_position}
            key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)

        if self.qk_layer_norms:
            query_states = self.q_layer_norm(query_states)
            key_states = self.k_layer_norm(key_states)

        attention_interface: Callable = eager_attention_forward

        if self.config._attn_implementation != "eager":
            if self.config._attn_implementation == "sdpa" and output_attentions:
                logger.warning_once(
                    "`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
                    'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
                )
            else:
                attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]

        attn_output, attn_weights = attention_interface(
            self,
            query_states,
            key_states,
            value_states,
            attention_mask,
            dropout=0.0 if not self.training else self.dropout,
            scaling=self.scaling,
            **kwargs,
        )

        attn_output = attn_output.reshape(bsz, q_len, -1).contiguous()
        attn_output = self.o_proj(attn_output)

        if output_attentions:
            attn_weights = None

        return attn_output, attn_weights, past_key_value


# this was adapted from LlamaDecoderLayer
class IdeficsDecoderLayer(nn.Module):
    def __init__(self, config: IdeficsConfig, layer_idx: Optional[int] = None):
        super().__init__()
        self.hidden_size = config.hidden_size
        self.self_attn = IdeficsAttention(
            hidden_size=self.hidden_size,
            num_heads=config.num_attention_heads,
            dropout=config.dropout,
            config=config,
            layer_idx=layer_idx,
        )
        self.mlp = IdeficsMLP(
            hidden_size=self.hidden_size,
            intermediate_size=config.intermediate_size,
            hidden_act=config.hidden_act,
        )
        self.input_layernorm = IdeficsRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.post_attention_layernorm = IdeficsRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.dropout = config.dropout

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_value: Optional[Tuple[torch.Tensor]] = None,
        output_attentions: Optional[bool] = False,
        use_cache: Optional[bool] = False,
        cache_position: Optional[torch.LongTensor] = None,
        **kwargs,
    ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
        """
        Args:
            hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
            attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
                `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more detail.
            use_cache (`bool`, *optional*):
                If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
                (see `past_key_values`).
            past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
        """

        residual = hidden_states

        hidden_states = self.input_layernorm(hidden_states)

        # Self Attention
        hidden_states, self_attn_weights, present_key_value = self.self_attn(
            hidden_states=hidden_states,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_value=past_key_value,
            output_attentions=output_attentions,
            use_cache=use_cache,
            cache_position=cache_position,
            **kwargs,
        )
        hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
        hidden_states = residual + hidden_states

        # Fully Connected
        residual = hidden_states
        hidden_states = self.post_attention_layernorm(hidden_states)
        hidden_states = self.mlp(hidden_states)
        hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
        hidden_states = residual + hidden_states

        outputs = (hidden_states,)

        if output_attentions:
            outputs += (self_attn_weights,)

        if use_cache:
            outputs += (present_key_value,)

        return outputs


class IdeficsGatedCrossAttentionLayer(nn.Module):
    def __init__(self, config: IdeficsConfig, layer_idx: Optional[int] = None):
        super().__init__()
        self.hidden_size = config.hidden_size
        self.cross_attn = IdeficsAttention(
            hidden_size=self.hidden_size,
            num_heads=config.num_attention_heads,
            is_cross_attention=True,
            dropout=config.dropout,
            config=config,
            qk_layer_norms=config.qk_layer_norms,
            layer_idx=layer_idx,
        )
        self.mlp = IdeficsMLP(
            hidden_size=self.hidden_size,
            intermediate_size=config.intermediate_size,
            hidden_act=config.hidden_act,
        )
        self.input_layernorm = IdeficsRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.post_attention_layernorm = IdeficsRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.config = config.dropout

        self.act_cross_attn = nn.Tanh()
        self.act_dense = nn.Tanh()

        if config.alpha_initializer == "zeros":
            if config.alpha_type == "vector":
                self.alpha_cross_attn = nn.Parameter(torch.zeros(1, 1, self.hidden_size))
                self.alpha_dense = nn.Parameter(torch.zeros(1, 1, self.hidden_size))
            elif config.alpha_type == "float":
                self.alpha_cross_attn = nn.Parameter(torch.zeros(1))
                self.alpha_dense = nn.Parameter(torch.zeros(1))
            else:
                raise ValueError(f"Unknown value for `alpha_type` ({config.alpha_type})")

        elif config.alpha_initializer == "ones":
            if config.alpha_type == "vector":
                self.alpha_cross_attn = nn.Parameter(torch.ones(1, 1, self.hidden_size))
                self.alpha_dense = nn.Parameter(torch.ones(1, 1, self.hidden_size))
            elif config.alpha_type == "float":
                self.alpha_cross_attn = nn.Parameter(torch.ones(1))
                self.alpha_dense = nn.Parameter(torch.ones(1))
            else:
                raise ValueError(f"Unknown value for `alpha_type` ({config.alpha_type})")

        elif config.alpha_initializer in {"normal", "gaussian", "random"}:
            if config.alpha_type == "vector":
                self.alpha_cross_attn = nn.Parameter(
                    torch.normal(mean=0.0, std=config.alphas_initializer_range, size=(1, 1, self.hidden_size))
                )
                self.alpha_dense = nn.Parameter(
                    torch.normal(mean=0.0, std=config.alphas_initializer_range, size=(1, 1, self.hidden_size))
                )
            elif config.alpha_type == "float":
                self.alpha_cross_attn = nn.Parameter(
                    torch.normal(mean=0.0, std=config.alphas_initializer_range, size=(1))
                )
                self.alpha_dense = nn.Parameter(torch.normal(mean=0.0, std=config.alphas_initializer_range, size=(1)))
            else:
                raise ValueError(f"Unknown value for `alpha_type` ({config.alpha_type})")

        else:
            raise NotImplementedError(f"Alpha initialization scheme {config.alpha_initializer} not yet implemented!")

        if not (hasattr(self, "alpha_cross_attn") and hasattr(self, "alpha_dense")):
            raise ValueError("Alpha parameters not initialized correctly!")

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        image_hidden_states: Optional[torch.Tensor] = None,
        image_attention_mask: Optional[torch.Tensor] = None,
        cross_attention_gate: Optional[torch.Tensor] = None,
        output_attentions: Optional[bool] = False,
        use_cache: Optional[bool] = False,
        past_key_value: Optional[Tuple[torch.Tensor]] = None,
        **kwargs,
    ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
        """
        Args:
            hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
            attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
                `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
            image_attention_mask (`torch.FloatTensor`, *optional*): image attention mask of size
                `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
            cross_attention_gate (`torch.FloatTensor`, *optional*):
                gate of size `(batch, seq_len)` used to zero-out cross-attention output for tokens attending no images.
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more detail.
            use_cache (`bool`, *optional*):
                If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
                (see `past_key_values`).
            past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
        """
        if image_hidden_states is None:
            raise ValueError(
                "`image_hidden_states` is required for Idefics cross attention module which are visual features to be"
                " conditioned on."
            )

        if cross_attention_gate is None:
            raise ValueError(
                "`cross_attention_gate` is required for Idefics cross attention module to zero-out the cross-attention hidden_states attending to no images."
            )

        if past_key_value is not None:
            raise NotImplementedError("Past key value states are not implemented for Idefics cross attention module.")

        residual = hidden_states

        hidden_states = self.input_layernorm(hidden_states)

        # Self Attention
        hidden_states, self_attn_weights, present_key_value = self.cross_attn(
            hidden_states=hidden_states,
            key_value_states=image_hidden_states,
            attention_mask=image_attention_mask,
            output_attentions=output_attentions,
            **kwargs,
        )
        hidden_states = nn.functional.dropout(hidden_states, p=self.config, training=self.training)
        # Fill in zeros for cross_attention hidden_states of tokens attending to no images
        hidden_states = hidden_states.masked_fill((cross_attention_gate == 0)[:, :, None], 0.0)
        hidden_states = residual + self.act_cross_attn(self.alpha_cross_attn) * hidden_states

        # Fully Connected
        residual = hidden_states
        hidden_states = self.post_attention_layernorm(hidden_states)
        hidden_states = self.mlp(hidden_states)
        hidden_states = nn.functional.dropout(hidden_states, p=self.config, training=self.training)
        hidden_states = residual + self.act_dense(self.alpha_dense) * hidden_states

        outputs = (hidden_states,)

        if output_attentions:
            outputs += (self_attn_weights,)

        if use_cache:
            outputs += (present_key_value,)

        return outputs


@auto_docstring
class IdeficsPreTrainedModel(PreTrainedModel):
    config_class = IdeficsConfig
    base_model_prefix = "model"
    supports_gradient_checkpointing = True
    _no_split_modules = ["IdeficsDecoderLayer", "IdeficsGatedCrossAttentionLayer"]
    _supports_sdpa = True
    _supports_cache_class = True
    _supports_flash_attn_2 = True
    _supports_static_cache = False  # IDEFICS cannot compile due to dynamic control flow when checking inputs
    _supports_attention_backend = True

    def _init_weights(self, module):
        # important: this ported version of Idefics isn't meant for training from scratch - only
        # inference and fine-tuning - so the proper init weights code has been removed - the m4 code
        # base should be used for training from scratch and it contains the correct code.
        std = self.config.initializer_range
        if isinstance(module, (nn.Linear, nn.Conv2d)):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()
        elif isinstance(module, nn.LayerNorm):
            module.weight.data.fill_(1.0)
            module.bias.data.zero_()
        elif isinstance(module, IdeficsRMSNorm):
            module.weight.data.fill_(1.0)
        elif isinstance(module, IdeficsVisionEmbeddings):
            module.class_embedding.data.normal_()
        elif isinstance(module, IdeficsGatedCrossAttentionLayer):
            if self.config.alpha_initializer == "zeros":
                module.alpha_cross_attn.data.zero_()
                module.alpha_dense.data.zero_()
            elif self.config.alpha_initializer == "ones":
                module.alpha_cross_attn.data.fill_(1.0)
                module.alpha_dense.data.fill_(1.0)
            elif self.config.alpha_initializer in {"normal", "gaussian", "random"}:
                module.alpha_cross_attn.data.normal_(mean=0.0, std=self.config.alphas_initializer_range)
                module.alpha_dense.data.normal_(mean=0.0, std=self.config.alphas_initializer_range)
        elif isinstance(module, IdeficsPerceiverResampler):
            module.latents.data.normal_()


class KwargsForCausalLM(FlashAttentionKwargs, LossKwargs): ...


@auto_docstring
class IdeficsModel(IdeficsPreTrainedModel):
    """
    Transformer decoder consisting of `config.num_hidden_layers` layers. Each layer is a [`IdeficsDecoderLayer`]

    Args:
        config: IdeficsConfig
    """

    def __init__(self, config: IdeficsConfig):
        super().__init__(config)
        self.config = config
        self.padding_idx = config.pad_token_id
        self.vocab_size = config.vocab_size

        self.embed_tokens = IdeficsDecoupledEmbedding(
            num_embeddings=config.vocab_size,
            num_additional_embeddings=config.additional_vocab_size,
            embedding_dim=config.hidden_size,
            partially_freeze=config.freeze_text_layers,
            padding_idx=self.padding_idx,
        )

        self.image_size = config.vision_config.image_size
        self.vision_config = config.vision_config
        self.vision_model = IdeficsVisionTransformer(config.vision_config)

        # Perceiver Resampler
        if config.use_resampler:
            perceiver_config = config.perceiver_config
            self.perceiver_resampler = IdeficsPerceiverResampler(
                config,
                config.vision_config.embed_dim,
                perceiver_config.resampler_depth,
                perceiver_config.resampler_n_heads,
                perceiver_config.resampler_head_dim,
                perceiver_config.resampler_n_latents,
            )

        self.layers = nn.ModuleList(
            [IdeficsDecoderLayer(config, layer_idx=i) for i in range(config.num_hidden_layers)]
        )

        self.cross_layer_interval = config.cross_layer_interval
        num_cross_layers = config.num_hidden_layers // self.cross_layer_interval
        self.gated_cross_attn_layers = nn.ModuleList(
            [IdeficsGatedCrossAttentionLayer(config, layer_idx=i) for i in range(num_cross_layers)]
        )
        self.gradient_checkpointing = False

        self.norm = IdeficsRMSNorm(config.hidden_size, eps=config.rms_norm_eps)

        # Initialize weights and apply final processing
        self.post_init()

        self.freeze_relevant_params(config)

    def freeze_relevant_params(self, config=None):
        if config is None:
            config = self.config

        if config.freeze_text_layers:
            self.freeze_text_layers(config.freeze_text_module_exceptions)

        if config.freeze_vision_layers:
            freeze_model(self.vision_model, module_exceptions=config.freeze_vision_module_exceptions)

    def freeze_text_layers(self, module_exceptions=[]):
        for module in [self.layers, self.norm]:
            freeze_model(module, module_exceptions=module_exceptions)

    def freeze_vision_layers(self, module_exceptions=[]):
        freeze_model(self.vision_model, module_exceptions=module_exceptions)

    def get_input_embeddings(self):
        return self.embed_tokens

    def set_input_embeddings(self, value):
        self.embed_tokens = value

    @can_return_tuple
    @auto_docstring
    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        pixel_values: Optional[torch.FloatTensor] = None,
        image_encoder_embeddings: Optional[torch.FloatTensor] = None,
        perceiver_embeddings: Optional[torch.FloatTensor] = None,
        image_attention_mask: Optional[torch.Tensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        interpolate_pos_encoding: Optional[bool] = False,
        return_dict: Optional[bool] = None,
        cache_position: Optional[torch.LongTensor] = None,
        **kwargs: Unpack[FlashAttentionKwargs],
    ) -> Union[Tuple, IdeficsBaseModelOutputWithPast]:
        r"""
        image_encoder_embeddings (`torch.FloatTensor`, *optional*):
            The output of the image encoder.
        perceiver_embeddings (`torch.FloatTensor`, *optional*):
            The output of the perceiver resampler.
        image_attention_mask (`torch.LongTensor`, *optional*):
            The attention mask for the image encoder.
        """
        device = input_ids.device if input_ids is not None else inputs_embeds.device

        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache

        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if (input_ids is None) ^ (inputs_embeds is not None):
            raise ValueError("You must specify exactly one of input_ids or inputs_embeds")

        if self.gradient_checkpointing and self.training and use_cache:
            logger.warning_once(
                "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
            )
            use_cache = False

        if inputs_embeds is None:
            inputs_embeds = self.embed_tokens(input_ids)

        # kept for BC (non `Cache` `past_key_values` inputs)
        return_legacy_cache = False
        if use_cache and not isinstance(past_key_values, Cache):
            return_legacy_cache = True
            if past_key_values is None:
                past_key_values = DynamicCache()
            else:
                past_key_values = DynamicCache.from_legacy_cache(past_key_values)
                logger.warning_once(
                    "We detected that you are passing `past_key_values` as a tuple of tuples. This is deprecated and "
                    "will be removed in v4.47. Please convert your cache or use an appropriate `Cache` class "
                    "(https://huggingface.co/docs/transformers/kv_cache#legacy-cache-format)"
                )

        batch_size, seq_length, _ = inputs_embeds.shape
        past_key_values_length = past_key_values.get_seq_length() if past_key_values is not None else 0
        seq_length_with_past = seq_length + past_key_values_length

        if cache_position is None:
            cache_position = torch.arange(
                past_key_values_length, past_key_values_length + inputs_embeds.shape[1], device=inputs_embeds.device
            )

        if attention_mask is not None and position_ids is None:
            # create position_ids on the fly for batch generation
            position_ids = attention_mask.long().cumsum(-1) - 1
            position_ids.masked_fill_(attention_mask == 0, 1)
            position_ids = position_ids[:, -seq_length:]
        elif position_ids is None:
            position_ids = cache_position.unsqueeze(0)

        if sum([x is None for x in [pixel_values, image_encoder_embeddings, perceiver_embeddings]]) != 2:
            raise ValueError(
                "Exactly 1 of pixel_values, image_encoder_embeddings or perceiver_embeddings has to be not-None."
            )

        elif pixel_values is not None:
            pixel_values = pixel_values.to(dtype=self.dtype, device=device)  # fp16 compatibility
            batch_size, num_images = pixel_values.shape[:2]
            pixel_values = pixel_values.contiguous().view(batch_size * num_images, *pixel_values.shape[2:])

            # Get sequence from the vision encoder
            image_hidden_states = self.vision_model(
                pixel_values=pixel_values, interpolate_pos_encoding=interpolate_pos_encoding
            ).last_hidden_state

        elif image_encoder_embeddings is not None:
            batch_size, num_images, image_seq_len, image_hidden_size = image_encoder_embeddings.size()
            image_hidden_states = image_encoder_embeddings.to(dtype=self.dtype, device=device)
            image_hidden_states = image_hidden_states.view(batch_size * num_images, image_seq_len, image_hidden_size)

        if self.config.use_resampler:
            if perceiver_embeddings is None:
                perceiver_embeddings = self.perceiver_resampler(image_hidden_states)
                image_seq_len, image_hidden_size = perceiver_embeddings.size(1), perceiver_embeddings.size(2)
            else:
                batch_size, num_images, image_seq_len, image_hidden_size = perceiver_embeddings.size()
            image_hidden_states = perceiver_embeddings
        elif perceiver_embeddings is None:
            image_seq_len, image_hidden_size = image_hidden_states.size(1), image_hidden_states.size(2)
        else:
            raise ValueError("If `perceiver_embeddings` are passed, use_resampler should be True")

        image_hidden_states = image_hidden_states.view(batch_size, num_images * image_seq_len, image_hidden_size)
        # # Hack to use the model in full language modeling mode
        # image_attention_mask = torch.zeros(batch_size, seq_length, 1, dtype=torch.long, device=image_hidden_states.device)
        # Make image_attention_mask compatible with hidden states
        text_seq_len = image_attention_mask.size(1)
        image_attention_mask = image_attention_mask.unsqueeze(-1)
        image_attention_mask = image_attention_mask.repeat(1, 1, 1, image_seq_len)
        image_attention_mask = image_attention_mask.view(batch_size, text_seq_len, num_images * image_seq_len)

        if image_hidden_states is not None:
            image_batch_size, image_sequence_length, _ = image_hidden_states.size()
            image_hidden_shape = (image_batch_size, image_sequence_length)
            if image_attention_mask is None:
                image_attention_mask = torch.ones(image_hidden_shape, device=device)
            image_attention_mask = self.invert_attention_mask(image_attention_mask)
        else:
            image_attention_mask = None

        # cross_attention_gate:
        # For any tokens attending to no images, the hidden_states coming out of the cross-attention should be zeroed-out.
        # `image_attention_mask` has shape [bsz, 1, num_images, hidden_size] with elements equal to either 0.0 or a very negative number.
        # If any of the elements are 0.0, then the token is attending to at least one image and the gate value is 1. Otherwise the gate value is 0.
        # `cross_attention_gate` has shape [bsz, seq_len] with elements equal to either 0.0 or 1.0.
        cross_attention_gate = ((((image_attention_mask == 0.0).any(dim=-1)).to(dtype=self.dtype)).squeeze(dim=1)).to(
            device
        )

        # embed positions
        if attention_mask is None:
            attention_mask = torch.ones(
                (batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
            )

        attention_mask = self._update_causal_mask(
            attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
        )

        hidden_states = inputs_embeds

        # decoder layers
        all_hidden_states = () if output_hidden_states else None
        all_self_attns = () if output_attentions else None
        next_decoder_cache = None

        for idx, decoder_layer in enumerate(self.layers):
            if output_hidden_states:
                all_hidden_states += (hidden_states,)

            def vblock(
                main_block,
                hidden_states,
                attention_mask,
                position_ids,
                past_key_value,
                image_hidden_states,
                image_attention_mask,
                cross_attention_gate,
                output_attentions,
                use_cache,
                layer_idx,
                cross_layer_interval,
                gated_cross_attn_layers,
                cache_position,
            ):
                # TODO(ls): Add cross attention values to respective lists
                if layer_idx % cross_layer_interval == 0:
                    xblock = gated_cross_attn_layers[layer_idx // cross_layer_interval]
                    outputs = xblock(
                        hidden_states,
                        attention_mask=attention_mask,
                        image_hidden_states=image_hidden_states,
                        image_attention_mask=image_attention_mask,
                        cross_attention_gate=cross_attention_gate,
                        output_attentions=output_attentions,
                        use_cache=use_cache,
                        past_key_value=None,  # not implemented
                        **kwargs,
                    )
                    hidden_states = outputs[0]

                layer_outputs = main_block(
                    hidden_states,
                    attention_mask=attention_mask,
                    position_ids=position_ids,
                    past_key_value=past_key_value,
                    output_attentions=output_attentions,
                    use_cache=use_cache,
                    cache_position=cache_position,
                    **kwargs,
                )

                return layer_outputs

            if self.gradient_checkpointing and self.training:
                past_key_values = None
                if use_cache:
                    logger.warning_once(
                        "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
                    )
                    use_cache = False

                layer_outputs = self._gradient_checkpointing_func(
                    vblock,
                    decoder_layer,
                    hidden_states,
                    attention_mask,
                    position_ids,
                    past_key_values,
                    image_hidden_states,
                    image_attention_mask,
                    cross_attention_gate,
                    output_attentions,
                    use_cache,
                    idx,
                    self.cross_layer_interval,
                    self.gated_cross_attn_layers,
                    cache_position,
                )
            else:
                layer_outputs = vblock(
                    decoder_layer,
                    hidden_states,
                    attention_mask=attention_mask,
                    position_ids=position_ids,
                    past_key_value=past_key_values,
                    image_hidden_states=image_hidden_states,
                    image_attention_mask=image_attention_mask,
                    cross_attention_gate=cross_attention_gate,
                    output_attentions=output_attentions,
                    use_cache=use_cache,
                    layer_idx=idx,
                    cross_layer_interval=self.cross_layer_interval,
                    gated_cross_attn_layers=self.gated_cross_attn_layers,
                    cache_position=cache_position,
                    **kwargs,
                )

            hidden_states = layer_outputs[0]

            if use_cache:
                next_decoder_cache = layer_outputs[2 if output_attentions else 1]

            if output_attentions:
                all_self_attns += (layer_outputs[1],)

        hidden_states = self.norm(hidden_states)

        # add hidden states from the last decoder layer
        if output_hidden_states:
            all_hidden_states += (hidden_states,)

        next_cache = next_decoder_cache if use_cache else None
        if return_legacy_cache:
            next_cache = next_cache.to_legacy_cache()
        image_hidden_states = image_hidden_states.view(batch_size, num_images, image_seq_len, image_hidden_size)

        return IdeficsBaseModelOutputWithPast(
            last_hidden_state=hidden_states,
            past_key_values=next_cache,
            hidden_states=all_hidden_states,
            attentions=all_self_attns,
            image_hidden_states=image_hidden_states,
        )

    # Copied from transformers.models.llama.modeling_llama.LlamaModel._update_causal_mask
    def _update_causal_mask(
        self,
        attention_mask: Union[torch.Tensor, "BlockMask"],
        input_tensor: torch.Tensor,
        cache_position: torch.Tensor,
        past_key_values: Cache,
        output_attentions: bool = False,
    ):
        if self.config._attn_implementation == "flash_attention_2":
            if attention_mask is not None and (attention_mask == 0.0).any():
                return attention_mask
            return None
        if self.config._attn_implementation == "flex_attention":
            if isinstance(attention_mask, torch.Tensor):
                attention_mask = make_flex_block_causal_mask(attention_mask)
            return attention_mask

        # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
        # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
        # to infer the attention mask.
        past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
        using_compilable_cache = past_key_values.is_compileable if past_key_values is not None else False

        # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
        if self.config._attn_implementation == "sdpa" and not using_compilable_cache and not output_attentions:
            if AttentionMaskConverter._ignore_causal_mask_sdpa(
                attention_mask,
                inputs_embeds=input_tensor,
                past_key_values_length=past_seen_tokens,
                is_training=self.training,
            ):
                return None

        dtype = input_tensor.dtype
        sequence_length = input_tensor.shape[1]
        if using_compilable_cache:
            target_length = past_key_values.get_max_cache_shape()
        else:
            target_length = (
                attention_mask.shape[-1]
                if isinstance(attention_mask, torch.Tensor)
                else past_seen_tokens + sequence_length + 1
            )

        # In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
        causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
            attention_mask,
            sequence_length=sequence_length,
            target_length=target_length,
            dtype=dtype,
            cache_position=cache_position,
            batch_size=input_tensor.shape[0],
        )

        if (
            self.config._attn_implementation == "sdpa"
            and attention_mask is not None
            and attention_mask.device.type in ["cuda", "xpu", "npu"]
            and not output_attentions
        ):
            # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
            # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
            # Details: https://github.com/pytorch/pytorch/issues/110213
            min_dtype = torch.finfo(dtype).min
            causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)

        return causal_mask

    @staticmethod
    # Copied from transformers.models.llama.modeling_llama.LlamaModel._prepare_4d_causal_attention_mask_with_cache_position
    def _prepare_4d_causal_attention_mask_with_cache_position(
        attention_mask: torch.Tensor,
        sequence_length: int,
        target_length: int,
        dtype: torch.dtype,
        cache_position: torch.Tensor,
        batch_size: int,
        **kwargs,
    ):
        """
        Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
        `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.

        Args:
            attention_mask (`torch.Tensor`):
                A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
                `(batch_size, 1, query_length, key_value_length)`.
            sequence_length (`int`):
                The sequence length being processed.
            target_length (`int`):
                The target length: when generating with static cache, the mask should be as long as the static cache,
                to account for the 0 padding, the part of the cache that is not filled yet.
            dtype (`torch.dtype`):
                The dtype to use for the 4D attention mask.
            cache_position (`torch.Tensor`):
                Indices depicting the position of the input sequence tokens in the sequence.
            batch_size (`torch.Tensor`):
                Batch size.
        """
        if attention_mask is not None and attention_mask.dim() == 4:
            # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
            causal_mask = attention_mask
        else:
            min_dtype = torch.finfo(dtype).min
            causal_mask = torch.full(
                (sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=cache_position.device
            )
            if sequence_length != 1:
                causal_mask = torch.triu(causal_mask, diagonal=1)
            causal_mask *= torch.arange(target_length, device=cache_position.device) > cache_position.reshape(-1, 1)
            causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
            if attention_mask is not None:
                causal_mask = causal_mask.clone()  # copy to contiguous memory for in-place edit
                mask_length = attention_mask.shape[-1]
                padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to(
                    causal_mask.device
                )
                padding_mask = padding_mask == 0
                causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
                    padding_mask, min_dtype
                )

        return causal_mask


class IdeficsForVisionText2Text(IdeficsPreTrainedModel, GenerationMixin):
    _tied_weights_keys = ["model.embed_tokens.weight", "lm_head.weight"]

    def __init__(self, config, vision_model=None):
        super().__init__(config)
        self.model = IdeficsModel(config)

        self.lm_head = IdeficsDecoupledLinear(
            in_features=config.hidden_size,
            out_features=config.vocab_size,
            out_additional_features=config.additional_vocab_size,
            bias=False,
            partially_freeze=config.freeze_lm_head,
        )

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.model.embed_tokens

    def set_input_embeddings(self, value):
        self.model.embed_tokens = value

    def get_output_embeddings(self):
        return self.lm_head

    def set_output_embeddings(self, new_embeddings):
        self.lm_head = new_embeddings

    def set_decoder(self, decoder):
        self.model = decoder

    def get_decoder(self):
        return self.model

    def tie_weights(self):
        """
        Overwrite `transformers.modeling_utils.PreTrainedModel.tie_weights` to handle the case of
        IdeficsDecoupledLinear and IdeficsDecoupledEmbedding.
        """
        output_embeddings = self.get_output_embeddings()
        input_embeddings = self.get_input_embeddings()

        if getattr(self.config, "tie_word_embeddings", True):
            output_embeddings.weight = input_embeddings.weight
            if input_embeddings.num_additional_embeddings > 0:
                assert output_embeddings.out_additional_features == input_embeddings.num_additional_embeddings
                output_embeddings.additional_fc.weight = input_embeddings.additional_embedding.weight

        if hasattr(output_embeddings, "out_features") and hasattr(input_embeddings, "num_embeddings"):
            output_embeddings.out_features = input_embeddings.num_embeddings
            if hasattr(output_embeddings, "out_additional_features") and hasattr(
                input_embeddings, "num_additional_embeddings"
            ):
                output_embeddings.out_additional_features = input_embeddings.num_additional_embeddings

    @can_return_tuple
    @auto_docstring
    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        pixel_values: Optional[torch.FloatTensor] = None,
        image_encoder_embeddings: Optional[torch.FloatTensor] = None,
        perceiver_embeddings: Optional[torch.FloatTensor] = None,
        image_attention_mask: Optional[torch.Tensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        interpolate_pos_encoding: Optional[bool] = False,
        return_dict: Optional[bool] = None,
        cache_position: Optional[torch.LongTensor] = None,
        **kwargs: Unpack[KwargsForCausalLM],
    ) -> Union[Tuple, IdeficsCausalLMOutputWithPast]:
        r"""
        labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
            config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
            (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
        image_encoder_embeddings (`torch.FloatTensor`, *optional*):
            The output of the image encoder.
        perceiver_embeddings (`torch.FloatTensor`, *optional*):
            The output of the perceiver resampler.
        image_attention_mask (`torch.LongTensor`, *optional*):
            The attention mask for the image encoder.

        Example:

        ```python
        >>> from transformers import AutoProcessor, IdeficsForVisionText2Text

        >>> model = IdeficsForVisionText2Text.from_pretrained("HuggingFaceM4/idefics-9b")
        >>> processor = AutoProcessor.from_pretrained("HuggingFaceM4/idefics-9b")

        >>> dogs_image_url_1 = "https://huggingface.co/datasets/hf-internal-testing/fixtures_nlvr2/raw/main/image1.jpeg"
        >>> dogs_image_url_2 = "https://huggingface.co/datasets/hf-internal-testing/fixtures_nlvr2/raw/main/image2.jpeg"

        >>> prompts = [
        ...     [
        ...         "User:",
        ...         dogs_image_url_1,
        ...         "Describe this image.\nAssistant: An image of two dogs.\n",
        ...         "User:",
        ...         dogs_image_url_2,
        ...         "Describe this image.\nAssistant:",
        ...     ]
        ... ]
        >>> inputs = processor(prompts, return_tensors="pt")
        >>> generate_ids = model.generate(**inputs, max_new_tokens=6)
        >>> processor.batch_decode(generate_ids, skip_special_tokens=True)
        ```"""

        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
        outputs = self.model(
            input_ids=input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            pixel_values=pixel_values,
            image_encoder_embeddings=image_encoder_embeddings,
            perceiver_embeddings=perceiver_embeddings,
            image_attention_mask=image_attention_mask,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            interpolate_pos_encoding=interpolate_pos_encoding,
            return_dict=True,
            cache_position=cache_position,
            **kwargs,
        )

        hidden_states = outputs[0]
        logits = self.lm_head(hidden_states)

        loss = None
        if labels is not None:
            loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)

        return IdeficsCausalLMOutputWithPast(
            loss=loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
            image_hidden_states=outputs.image_hidden_states,
        )

    def prepare_inputs_for_generation(
        self,
        input_ids,
        attention_mask=None,
        position_ids=None,
        inputs_embeds=None,
        past_key_values=None,
        cache_position=None,
        pixel_values=None,
        image_hidden_states=None,
        image_attention_mask=None,
        use_cache=None,
        **kwargs,
    ):
        # Overwritten -- custom processing based on `config.use_resampler`

        images_kwargs = {}
        if image_hidden_states is not None:
            if self.config.use_resampler:
                images_kwargs["perceiver_embeddings"] = image_hidden_states
            else:
                images_kwargs["image_encoder_embeddings"] = image_hidden_states
        else:
            images_kwargs["pixel_values"] = pixel_values
        images_kwargs["interpolate_pos_encoding"] = kwargs.pop("interpolate_pos_encoding", False)

        model_inputs = super().prepare_inputs_for_generation(
            input_ids,
            past_key_values=past_key_values,
            attention_mask=attention_mask,
            inputs_embeds=inputs_embeds,
            cache_position=cache_position,
            position_ids=position_ids,
            use_cache=use_cache,
            image_attention_mask=image_attention_mask,
            **images_kwargs,
            **kwargs,
        )

        if image_attention_mask is not None and inputs_embeds is None:
            seq_length = model_inputs["input_ids"].shape[1]
            model_inputs["image_attention_mask"] = image_attention_mask[:, -seq_length:]

        return model_inputs

    def _update_model_kwargs_for_generation(
        self,
        outputs: ModelOutput,
        model_kwargs: Dict[str, Any],
        is_encoder_decoder: bool = False,
        **kwargs,
    ) -> Dict[str, Any]:
        model_kwargs = super()._update_model_kwargs_for_generation(
            outputs,
            model_kwargs,
            is_encoder_decoder,
            **kwargs,
        )

        if "image_attention_mask" in model_kwargs:
            image_attention_mask = model_kwargs["image_attention_mask"]
            last_mask = image_attention_mask[:, -1, :].unsqueeze(1)
            if model_kwargs.get("use_cache", True):
                model_kwargs["image_attention_mask"] = last_mask
            else:
                model_kwargs["image_attention_mask"] = torch.cat([image_attention_mask, last_mask], dim=1)

        # Get the precomputed image_hidden_states
        model_kwargs["image_hidden_states"] = outputs.image_hidden_states
        return model_kwargs

    @staticmethod
    def _reorder_cache(past, beam_idx):
        reordered_past = ()
        for layer_past in past:
            reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),)
        return reordered_past


__all__ = ["IdeficsForVisionText2Text", "IdeficsModel", "IdeficsPreTrainedModel"]
