
    fTh                     ,    S SK Jr   " S S\5      rS/rg)   )PretrainedConfigc                      ^  \ rS rSrSrSrS/rSSSSSSSS.rS/S	/4S
S/S
/4S
/S
/4S.r                    SU 4S jjr	Sr
U =r$ )HeliumConfig   a  
This is the configuration class to store the configuration of a [`HeliumModel`]. It is used to instantiate an Helium
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the Helium 2b model.
e.g. [kyutai/helium-2b](https://huggingface.co/kyutai/helium-2b)
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
    vocab_size (`int`, *optional*, defaults to 48000):
        Vocabulary size of the Helium model. Defines the number of different tokens that can be represented by the
        `inputs_ids` passed when calling [`HeliumModel`]
    hidden_size (`int`, *optional*, defaults to 2560):
        Dimension of the hidden representations.
    intermediate_size (`int`, *optional*, defaults to 7040):
        Dimension of the MLP representations.
    num_hidden_layers (`int`, *optional*, defaults to 24):
        Number of hidden layers in the Transformer decoder.
    num_attention_heads (`int`, *optional*, defaults to 20):
        Number of attention heads for each attention layer in the Transformer decoder.
    num_key_value_heads (`int`, *optional*, defaults to 20):
        This is the number of key_value heads that should be used to implement Grouped Query Attention. If
        `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
        `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
        converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
        by meanpooling all the original heads within that group. For more details checkout [this
        paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
        `num_attention_heads`.
    head_dim (`int`, *optional*, defaults to 128):
        The attention head dimension.
    hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
        The legacy activation function. It is overwritten by the `hidden_activation`.
    attention_dropout (`float`, *optional*, defaults to 0.0):
        The dropout ratio for the attention probabilities.
    max_position_embeddings (`int`, *optional*, defaults to 4096):
        The maximum sequence length that this model might ever be used with.
    initializer_range (`float`, *optional*, defaults to 0.02):
        The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
    rms_norm_eps (`float`, *optional*, defaults to 1e-08):
        The epsilon used by the rms normalization layers.
    use_cache (`bool`, *optional*, defaults to `True`):
        Whether or not the model should return the last key/values attentions (not used by all models). Only
        relevant if `config.is_decoder=True`.
    tie_word_embeddings (`bool`, *optional*, defaults to `False`):
        Whether to tie weight embeddings
    rope_theta (`float`, *optional*, defaults to 100000.0):
        The base period of the RoPE embeddings.
    pad_token_id (`int`, *optional*, defaults to 3):
        Padding token id.
    eos_token_id (`int` | `list`, *optional*, defaults to 2):
        End of stream token id.
    bos_token_id (`int`, *optional*, defaults to 1):
        Beginning of stream token id.
    attention_bias (`bool`, *optional*, defaults to `False`):
        Whether to use a bias in the query, key, value and output projection layers during self-attention.
    mlp_bias (`bool`, *optional*, defaults to `False`):
        Whether to use a bias in up_proj, down_proj and gate_proj layers in the MLP layers.
```python
>>> from transformers import HeliumModel, HeliumConfig
>>> # Initializing a Helium 2b style configuration
>>> configuration = HeliumConfig()
>>> # Initializing a model from the Helium 2b style configuration
>>> model = HeliumModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```heliumpast_key_valuescolwiserowwise)zlayers.*.self_attn.q_projzlayers.*.self_attn.k_projzlayers.*.self_attn.v_projzlayers.*.self_attn.o_projzlayers.*.mlp.gate_projzlayers.*.mlp.up_projzlayers.*.mlp.down_proj	input_idsinputs_embedshidden_statesattention_mask)embed_tokenslayersnormc                    > Xl         Xl        X l        X0l        X@l        XPl        X`l        Xpl        Xl        Xl	        Xl
        Xl        Xl        UU l        Xl        UU l        [         TU ]D  " SUUUUS.UD6  g )N)pad_token_idbos_token_ideos_token_idtie_word_embeddings )
vocab_sizemax_position_embeddingshidden_sizeintermediate_sizenum_hidden_layersnum_attention_headsnum_key_value_headshead_dim
hidden_actinitializer_rangerms_norm_eps	use_cache
rope_thetaattention_biasattention_dropoutmlp_biassuper__init__)selfr   r   r   r   r   r   r   r    r&   r   r!   r"   r#   r   r$   r   r   r   r%   r'   kwargs	__class__s                         g/var/www/auris/envauris/lib/python3.13/site-packages/transformers/models/helium/configuration_helium.pyr)   HeliumConfig.__init__h   s    0 %'>$&!2!2#6 #6  $!2("$,!2  	
%%% 3		

 	
    )r%   r&   r   r    r   r!   r   r   r'   r   r   r   r"   r$   r#   r   )i  i 
  i     r   r      silug        i   g{Gz?g:0yE>TFg     j@r         FF)__name__
__module____qualname____firstlineno____doc__
model_typekeys_to_ignore_at_inferencebase_model_tp_planbase_model_pp_planr)   __static_attributes____classcell__)r,   s   @r-   r   r      s    @D J#4"5%.%.%.%."+ )"+ &(9:#%568IJ!"_$56  $!+/
 /
r/   r   N)configuration_utilsr   r   __all__r   r/   r-   <module>rB      s$   " 4C
# C
L 
r/   