
    fThK                         S r SSKJrJrJr  SSKJr  SSKJr  SSK	J
r
JrJrJr  SSKJrJr  SSKJr   " S	 S
\
SS9r\R(                  " \5      r " S S\5      rS/rg)z$
Image/Text processor class for GIT
    )ListOptionalUnion   )BatchFeature)
ImageInput)ProcessingKwargsProcessorMixinUnpack!_validate_images_text_input_order)PreTokenizedInput	TextInput)loggingc                       \ rS rSr0 rSrg)GitProcessorKwargs    N)__name__
__module____qualname____firstlineno__	_defaults__static_attributes__r       ^/var/www/auris/envauris/lib/python3.13/site-packages/transformers/models/git/processing_git.pyr   r      s    Ir   r   F)totalc                      ^  \ rS rSrSrSS/rSrSrU 4S jr    SS\	\
   S	\	\\\\\   \\   4      S
\\   S\4S jjrS rS r\S 5       rSrU =r$ )GitProcessor#   a  
Constructs a GIT processor which wraps a CLIP image processor and a BERT tokenizer into a single processor.

[`GitProcessor`] offers all the functionalities of [`CLIPImageProcessor`] and [`BertTokenizerFast`]. See the
[`~GitProcessor.__call__`] and [`~GitProcessor.decode`] for more information.

Args:
    image_processor ([`AutoImageProcessor`]):
        The image processor is a required input.
    tokenizer ([`AutoTokenizer`]):
        The tokenizer is a required input.
image_processor	tokenizerAutoImageProcessorAutoTokenizerc                 F   > [         TU ]  X5        U R                  U l        g )N)super__init__r    current_processor)selfr    r!   	__class__s      r   r&   GitProcessor.__init__5   s    4!%!5!5r   imagestextkwargsreturnc                 z   Uc  Uc  [        S5      e[        X5      u  pU R                  " [        4SU R                  R
                  0UD6n0 nUb'  U R                  " U40 US   D6nUR                  U5        Ub'  U R                  " U40 US   D6n	UR                  U	5        [        XvS   R                  S5      S9$ )a,  
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
and `kwargs` arguments to BertTokenizerFast's [`~BertTokenizerFast.__call__`] if `text` is not `None` to encode
the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
CLIPImageProcessor's [`~CLIPImageProcessor.__call__`] if `images` is not `None`. Please refer to the docstring
of the above two methods for more information.

Args:
    images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
        The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
        tensor. Both channels-first and channels-last formats are supported.
    text (`TextInput`, `PreTokenizedInput`, `List[TextInput]`, `List[PreTokenizedInput]`, *optional*):
        The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
        (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
        `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).

    return_tensors (`str` or [`~utils.TensorType`], *optional*):
        If set, will return tensors of a particular framework. Acceptable values are:

        - `'tf'`: Return TensorFlow `tf.constant` objects.
        - `'pt'`: Return PyTorch `torch.Tensor` objects.
        - `'np'`: Return NumPy `np.ndarray` objects.
        - `'jax'`: Return JAX `jnp.ndarray` objects.

Returns:
    [`BatchFeature`]: A [`BatchFeature`] with the following fields:

    - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
    - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
      `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
      `None`).
    - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
z?You have to specify either text or images. Both cannot be none.tokenizer_init_kwargstext_kwargsimages_kwargscommon_kwargsreturn_tensors)datatensor_type)

ValueErrorr   _merge_kwargsr   r!   init_kwargsupdater    r   get)
r(   r+   r,   audiovideosr-   output_kwargsr5   text_featuresimage_featuress
             r   __call__GitProcessor.__call__9   s    R <FN^__ 9F**
"&.."<"<
 
  NN4P=3OPMKK&!11&[M/<Z[NKK'3Q3U3UVf3ghhr   c                 :    U R                   R                  " U0 UD6$ )z
This method forwards all its arguments to BertTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
)r!   batch_decoder(   argsr-   s      r   rD   GitProcessor.batch_decodex   s    
 ~~**D;F;;r   c                 :    U R                   R                  " U0 UD6$ )z
This method forwards all its arguments to BertTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
the docstring of this method for more information.
)r!   decoderE   s      r   rI   GitProcessor.decode   s    
 ~~$$d5f55r   c                 
    / SQ$ )N)	input_idsattention_maskpixel_valuesr   )r(   s    r   model_input_namesGitProcessor.model_input_names   s    >>r   )r'   )NNNN)r   r   r   r   __doc__
attributesimage_processor_classtokenizer_classr&   r   r   r   r   r   r   r   r   r   rA   rD   rI   propertyrO   r   __classcell__)r)   s   @r   r   r   #   s     $[1J0%O6 (,hl=i$=i uY(94	?DQbLccde=i +,=i 
=i~<6 ? ?r   r   N)rQ   typingr   r   r   feature_extraction_utilsr   image_utilsr   processing_utilsr	   r
   r   r   tokenization_utils_baser   r   utilsr   r   
get_loggerr   loggerr   __all__r   r   r   <module>r`      s^    ) ( 4 % k k C )  
		H	%e?> e?P 
r   