
    fTh*                     `    S r SSKJr  SSKJr  \R
                  " \5      r " S S\5      rS/r	g)zFalcon configuration   )PretrainedConfig)loggingc                      ^  \ rS rSrSrSrS/r                       S	U 4S jjr\S 5       r	\S 5       r
SrU =r$ )
FalconConfig   a   
This is the configuration class to store the configuration of a [`FalconModel`]. It is used to instantiate a Falcon
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the
[tiiuae/falcon-7b](https://huggingface.co/tiiuae/falcon-7b) architecture.

Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.


Args:
    vocab_size (`int`, *optional*, defaults to 65024):
        Vocabulary size of the Falcon model. Defines the number of different tokens that can be represented by the
        `inputs_ids` passed when calling [`FalconModel`]
    hidden_size (`int`, *optional*, defaults to 4544):
        Dimension of the hidden representations.
    num_hidden_layers (`int`, *optional*, defaults to 32):
        Number of hidden layers in the Transformer decoder.
    num_attention_heads (`int`, *optional*, defaults to 71):
        Number of attention heads for each attention layer in the Transformer encoder.
    num_ln_in_parallel_attn (`int`, *optional*):
        Set to 2 if separate layer norms are to be used for the MLP and the attention output when using parallel
        attention, otherwise, 1.
    layer_norm_epsilon (`float`, *optional*, defaults to 1e-05):
        The epsilon used by the layer normalization layers.
    initializer_range (`float`, *optional*, defaults to 0.02):
        The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
    use_cache (`bool`, *optional*, defaults to `True`):
        Whether the model should return the last key/values attentions (not used by all models). Only relevant if
        `config.is_decoder=True`.
    hidden_dropout (`float`, *optional*, defaults to 0.0):
        The dropout probability for MLP layers.
    attention_dropout (`float`, *optional*, defaults to 0.0):
        The dropout probability for attention layers.
    num_kv_heads (`int`, *optional*):
        Number of key-value heads to use per attention layer. If unset, defaults to the same value as
        `num_attention_heads`.
    alibi (`bool`, *optional*, defaults to `False`):
        Whether to use ALiBi positional biases during self-attention.
    new_decoder_architecture (`bool`, *optional*, defaults to `False`):
        Whether to use the new (Falcon-40B) decoder architecture. If `True`, the `multi_query` and `parallel_attn`
        arguments are ignored, as the new decoder always uses parallel attention.
    multi_query (`bool`, *optional*, defaults to `True`):
        Whether to use multi-query attention in the decoder. Ignored when `new_decoder_architecture` is `True`.
    parallel_attn (`bool`, *optional*, defaults to `True`):
        Whether to compute attention in parallel with the feedforward layer. If False, they are consecutive
        instead, as in the original Transformer architecture. Ignored when `new_decoder_architecture` is `True`.
    bias (`bool`, *optional*, defaults to `False`):
        Whether to use bias on Linear layers.
    max_position_embeddings (`int`, *optional*, defaults to 2048):
        The maximum sequence length that this model might ever be used with, when `alibi` is `False`. Pretrained
        Falcon models with RoPE support up to 2048 tokens.
    rope_theta (`float`, *optional*, defaults to 10000.0):
        The base period of the RoPE embeddings.
    rope_scaling (`Dict`, *optional*):
        Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
        and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
        accordingly.
        Expected contents:
            `rope_type` (`str`):
                The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
                'llama3'], with 'default' being the original RoPE implementation.
            `factor` (`float`, *optional*):
                Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
                most scaling types, a `factor` of x will enable the model to handle sequences of length x *
                original maximum pre-trained length.
            `original_max_position_embeddings` (`int`, *optional*):
                Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
                pretraining.
            `attention_factor` (`float`, *optional*):
                Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
                computation. If unspecified, it defaults to value recommended by the implementation, using the
                `factor` field to infer the suggested value.
            `beta_fast` (`float`, *optional*):
                Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
                ramp function. If unspecified, it defaults to 32.
            `beta_slow` (`float`, *optional*):
                Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
                ramp function. If unspecified, it defaults to 1.
            `short_factor` (`List[float]`, *optional*):
                Only used with 'longrope'. The scaling factor to be applied to short contexts (<
                `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
                size divided by the number of attention heads divided by 2
            `long_factor` (`List[float]`, *optional*):
                Only used with 'longrope'. The scaling factor to be applied to long contexts (<
                `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
                size divided by the number of attention heads divided by 2
            `low_freq_factor` (`float`, *optional*):
                Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
            `high_freq_factor` (`float`, *optional*):
                Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
    bos_token_id (`int`, *optional*, defaults to 11):
        The id of the "beginning-of-sequence" token.
    eos_token_id (`int`, *optional*, defaults to 11):
        The id of the "end-of-sequence" token.
    ffn_hidden_size (`int`, *optional*):
        The hidden size of the feedforward layer in the Transformer decoder.
        defaults to 4x hidden dim
    activation (`str`, *optional*, defaults to `"gelu"`):
        The activation function used in the feedforward layer.

Example:

```python
>>> from transformers import FalconModel, FalconConfig

>>> # Initializing a small (2-layer) Falcon configuration
>>> configuration = FalconConfig(num_hidden_layers=2)

>>> # Initializing a model from the small configuration
>>> model = FalconModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config
```falconpast_key_valuesc                   > Xl         UR                  SS 5      nUc  UOUU l        X0l        X@l        X`l        Xpl        Xl        Xl        Xl	        UU l
        UU l        Uc  UOUU l        Xl        Xl        Xl        Xl        UU l        XPl        UU l        UU l        UU l        UU l        Uc  US-  U l        OUU l        [0        TU ]d  " SUUS.UD6  g )Nn_embed   )bos_token_ideos_token_id )
vocab_sizepophidden_sizenum_hidden_layersnum_attention_headslayer_norm_epsiloninitializer_range	use_cachehidden_dropoutattention_dropoutr   r   num_kv_headsalibinew_decoder_architecturemulti_queryparallel_attnbiasnum_ln_in_parallel_attnmax_position_embeddings
rope_thetarope_scaling
activationffn_hidden_sizesuper__init__)selfr   r   r   r   r    r   r   r   r   r   r   r   r   r   r   r   r!   r"   r#   r   r   r%   r$   kwargsr   	__class__s                             g/var/www/auris/envauris/lib/python3.13/site-packages/transformers/models/falcon/configuration_falcon.pyr'   FalconConfig.__init__   s    6 %**Y-*1/;w!2#6 "4!2",!2((3?3G/\
(@%&*	'>$'>$$($"#.?D #2D XlXQWX    c                 4    U R                   U R                  -  $ N)r   r   r(   s    r+   head_dimFalconConfig.head_dim   s    4#;#;;;r-   c                 $    U R                   (       + $ r/   )r   r0   s    r+   rotaryFalconConfig.rotary   s    ::~r-   )r$   r   r   r   r   r   r%   r   r   r   r   r!   r   r   r   r   r   r    r   r#   r"   r   r   )i   i      G   Ngh㈵>g{Gz?T        r8   NFFTTFi   g     @N   r9   Ngelu)__name__
__module____qualname____firstlineno____doc__
model_typekeys_to_ignore_at_inferencer'   propertyr1   r4   __static_attributes____classcell__)r*   s   @r+   r   r      s    rh J#4"5  $!& $18Yt < <  r-   r   N)
r?   configuration_utilsr   utilsr   
get_loggerr;   loggerr   __all__r   r-   r+   <module>rJ      s<     3  
		H	%x# xv 
r-   