
    fTh>                     ~    S SK JrJrJrJr  SSKJr  SSKJr   " S S\5      r	 " S S\5      r
 " S	 S
\5      r/ SQrg)    )DictListOptionalUnion   )PretrainedConfig)rope_config_validationc                      ^  \ rS rSrSrSrSrSSSSSSSS	/ S
QSS/SSS4S\S\S\S\S\S\S\S\S\	\   S\S\	\   S\S\S\
4U 4S jjjrSrU =r$ )Emu3VQVAEConfig   a_	  
This is the configuration class to store the configuration of a [`Emu3VQVAE`]. It is used to instantiate an VQ-VAE
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a configuration to the VQ model presented in Emu3 paper.

Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
    codebook_size (`int`, *optional*, defaults to 32768):
        Codebook size of the VQ model.
    embed_dim (`int`, *optional*, defaults to 4):
        Dimension of the quantized vector in codebook.
    latent_channels (`int`, *optional*, defaults to 4):
        Dimension of the output channel of encoder and the input channel of decoder
    double_latent (`bool`, *optional*, defaults to `False`):
        Whether double the output dim of the encoder.
    in_channels (`int`, *optional*, defaults to 3):
        Input channel of encoder.
    out_channels (`int`, *optional*, defaults to 3):
        Output channel of decoder.
    temporal_downsample_factor (`int`, *optional*, defaults to 4):
        Temporal downsample factor.
    base_channels (`int`, *optional*, defaults to 256):
        Basic channel number of the intermediate blocks.
    channel_multiplier (`List[int]`, *optional*, defaults to `[1, 2, 2, 4]`):
        Channel scaling factor of the intermediate blocks.
    num_res_blocks (`int`, *optional*, defaults to 2):
        Residual block number in each stage.
    attn_resolutions (`List[int]`, *optional*, defaults to `[3]`):
        Stage indices to apply attention.
    hidden_size (`int`, *optional*, defaults to 1024):
        Dimension of the hidden representations in the attention layer.
    num_attention_heads (`int`, *optional*, defaults to 1):
        Number of attention heads for each attention layer.
    attention_dropout (`float`, *optional*, defaults to 0.0):
        The dropout ratio for the attention probabilities.

```python
>>> from transformers import Emu3VQVAE, Emu3VQVAEConfig

>>> # Initializing a video VQ model of Emu3 configuration
>>> configuration = Emu3VQVAEConfig()

>>> # Initializing a model from the Emu3 VQ model style configuration
>>> model = Emu3VQVAE(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config
```
emu3_vqgan	vq_configi      Fr      )      r   r   r   i   r   g        codebook_size	embed_dimlatent_channelsdouble_latentin_channelsout_channelstemporal_downsample_factorbase_channelschannel_multipliernum_res_blocksattn_resolutionshidden_sizenum_attention_headsattention_dropoutc                    > [         TU ]  " S0 UD6  Xl        X l        X0l        X@l        XPl        X`l        Xpl        Xl	        Xl
        Xl        Xl        Xl        Xl        Xl        g N )super__init__r   r   r   r   r   r   r   r   r   r   r   r   r   r    )selfr   r   r   r   r   r   r   r   r   r   r   r   r   r    kwargs	__class__s                   c/var/www/auris/envauris/lib/python3.13/site-packages/transformers/models/emu3/configuration_emu3.pyr%   Emu3VQVAEConfig.__init__M   sh    $ 	"6"*".*&(*D'*"4, 0&#6 !2    )r    r   r   r   r   r   r   r   r   r   r   r   r   r   )__name__
__module____qualname____firstlineno____doc__
model_typebase_config_keyintboolr   floatr%   __static_attributes____classcell__r(   s   @r)   r   r      s    0d J!O # #*+ (4'(c#$#&!3!3 !3 	!3
 !3 !3 !3 %(!3 !3 !I!3 !3 s)!3 !3 !!3 !!3 !3r+   r   c            %          ^  \ rS rSrSrSrSrS/r                    SS\S\S\S	\S
\S\	\   S\
S\S\S\S\S\S\S\S\S\	S\S\4$U 4S jjjrSrU =r$ )Emu3TextConfigq   a  
This is the configuration class to store the configuration of a [`Emu3TextModel`]. It is used to instantiate a
emu3 model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the
[Emu3-community/Emu3-Chat-hf](https://huggingface.co/Emu3-community/Emu3-Chat-hf).

Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.


Args:
    vocab_size (`int`, *optional*, defaults to 184622):
        Vocabulary size of the Emu3 model. Defines the number of different tokens that can be represented by the
        `inputs_ids` passed when calling [`Emu3Model`]
    hidden_size (`int`, *optional*, defaults to 4096):
        Dimension of the hidden representations.
    intermediate_size (`int`, *optional*, defaults to 14336):
        Dimension of the MLP representations.
    num_hidden_layers (`int`, *optional*, defaults to 32):
        Number of hidden layers in the Transformer decoder.
    num_attention_heads (`int`, *optional*, defaults to 32):
        Number of attention heads for each attention layer in the Transformer decoder.
    num_key_value_heads (`int`, *optional*, defaults to 8):
        This is the number of key_value heads that should be used to implement Grouped Query Attention. If
        `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
        `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
        converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
        by meanpooling all the original heads within that group. For more details checkout [this
        paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
        `num_attention_heads`.
    hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
        The non-linear activation function (function or string) in the decoder.
    max_position_embeddings (`int`, *optional*, defaults to 9216):
        The maximum sequence length that this model might ever be used with. Emu supports up to 9216 tokens,
    rms_norm_eps (`float`, *optional*, defaults to 1e-05):
        The epsilon used by the rms normalization layers.
    use_cache (`bool`, *optional*, defaults to `True`):
        Whether or not the model should return the last key/values attentions (not used by all models). Only
        relevant if `config.is_decoder=True`.
    pad_token_id (`int`, *optional*, defaults to 151643):
        Padding token id.
    bos_token_id (`int`, *optional*, defaults to 151849):
        Beginning of stream token id.
    eos_token_id (`int`, *optional*, defaults to 151850):
        End of stream token id.
    tie_word_embeddings (`bool`, *optional*, defaults to `False`):
        Whether to tie weight embeddings
    rope_theta (`float`, *optional*, defaults to 1000000.0):
        The base period of the RoPE embeddings.
    rope_scaling (`Dict`, *optional*):
        Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
        and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
        accordingly.
        Expected contents:
            `rope_type` (`str`):
                The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
                'llama3'], with 'default' being the original RoPE implementation.
            `factor` (`float`, *optional*):
                Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
                most scaling types, a `factor` of x will enable the model to handle sequences of length x *
                original maximum pre-trained length.
            `original_max_position_embeddings` (`int`, *optional*):
                Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
                pretraining.
            `attention_factor` (`float`, *optional*):
                Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
                computation. If unspecified, it defaults to value recommended by the implementation, using the
                `factor` field to infer the suggested value.
            `beta_fast` (`float`, *optional*):
                Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
                ramp function. If unspecified, it defaults to 32.
            `beta_slow` (`float`, *optional*):
                Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
                ramp function. If unspecified, it defaults to 1.
            `short_factor` (`List[float]`, *optional*):
                Only used with 'longrope'. The scaling factor to be applied to short contexts (<
                `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
                size divided by the number of attention heads divided by 2
            `long_factor` (`List[float]`, *optional*):
                Only used with 'longrope'. The scaling factor to be applied to long contexts (<
                `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
                size divided by the number of attention heads divided by 2
            `low_freq_factor` (`float`, *optional*):
                Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
            `high_freq_factor` (`float`, *optional*):
                Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
    mlp_bias (`bool`, *optional*, defaults to `False`):
        Whether to use a bias in up_proj, down_proj and gate_proj layers in the MLP layers.
    attention_bias (`bool`, *optional*, defaults to `False`):
        Whether to use a bias in the query, key, value and output projection layers during self-attention.
    attention_dropout (`float`, *optional*, defaults to 0.1):
        The dropout ratio for the attention probabilities.
    initializer_range (`float`, *optional*, defaults to 0.02):
        The standard deviation of the truncated_normal_initializer for initializing all weight matrices.


```python
>>> from transformers import Emu3Model, Emu3Config

>>> # Initializing a Emu3-community/Emu3-Chat-hf style configuration
>>> configuration = Emu3Config()

>>> # Initializing a model from the Emu3-community/Emu3-Chat-hf style configuration
>>> model = Emu3Model(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config
```emu3_text_modeltext_configpast_key_values
vocab_sizer   intermediate_sizenum_hidden_layersr   num_key_value_heads
hidden_actmax_position_embeddingsrms_norm_eps	use_cachepad_token_idbos_token_ideos_token_idtie_word_embeddings
rope_thetarope_scalingr    initializer_rangec                   > Xl         Xl        X l        X0l        X@l        XPl        X`l        Xpl        Xl        Xl	        Xl
        UU l        UU l        UU l        UU l        [        U 5        UU l        ["        TU ]H  " SUUUUS.UD6  g )N)rG   rH   rI   rJ   r#   )r?   rD   r   r@   rA   r   rB   rC   rE   rF   rK   rL   mlp_biasattention_biasrM   r	   r    r$   r%   )r&   r?   r   r@   rA   r   rB   rC   rD   rE   rF   rG   rH   rI   rJ   rK   rL   rO   rP   r    rM   r'   r(   s                         r)   r%   Emu3TextConfig.__init__   s    0 %'>$&!2!2#6 #6 $("$( ,!2t$!2 	
%%% 3		

 	
r+   )rP   r    rC   r   rM   r@   rD   rO   r   rA   rB   rE   rL   rK   rF   r?   )i. i   i 8      rR      silui $  gh㈵>Ti[P i)Q i*Q Fg    .ANFFg?g{Gz?)r,   r-   r.   r/   r0   r1   r2   keys_to_ignore_at_inferencer3   r   strr5   r4   r%   r6   r7   r8   s   @r)   r:   r:   q   s   kZ #J#O#4"5 !!&!##%-. '+""""$)%!%#&#'+1
1
 1
 	1

 1
 !1
 &c]1
 1
 "%1
 1
 1
 1
 1
 1
 "1
  !1
" #1
( !)1
* !+1
 1
r+   r:   c            
       ~   ^  \ rS rSrSrSrS/r\\S.r	   SS\
\\4   S\
\\4   S\\\\4      4U 4S	 jjjrS
rU =r$ )
Emu3Configi  a  
This is the configuration class to store the configuration of a [`Emu3Model`]. It is used to instantiate a
emu3 model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the
[Emu3-community/Emu3-Chat-hf](https://huggingface.co/Emu3-community/Emu3-Chat-hf).

Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.


Args:
    vq_config (`Union[Dict, Emu3VQVAEConfig]`, *optional*):
        Emu3VQVAEConfig instance containing the configuration for the VQ-VAE model.
    text_config (`Union[Dict, Emu3TextConfig]``, *optional*):
        Emu3TextConfig instance containing the configuration for the language model.
    vocabulary_map (`dict`, *optional*):
        A dictionary containing the vocabulary map from the tokenizer. Used to obtain tokens from the image inputs.
emu3r>   )r=   r   r   r=   vocabulary_mapc                   > Uc  [        5       nO [        U[        5      (       a  [        S0 UD6nUc  [        5       nO [        U[        5      (       a  [        S0 UD6nXl        X l        X0l        [        TU ]   " S0 UD6  g r"   )	r   
isinstancedictr:   r   r=   rZ   r$   r%   )r&   r   r=   rZ   r'   r(   s        r)   r%   Emu3Config.__init__/  sv     ')I	4(('4)4I(*KT**(7;7K"&,"6"r+   )r=   rZ   r   )NNN)r,   r-   r.   r/   r0   r1   rU   r:   r   sub_configsr   r   r   r3   r%   r6   r7   r8   s   @r)   rX   rX     st    & J#4"5"0OK 373737	#./# 4/0# !c3h0	# #r+   rX   )rX   r:   r   N)typingr   r   r   r   configuration_utilsr   modeling_rope_utilsr	   r   r:   rX   __all__r#   r+   r)   <module>rd      sH   " / . 3 9W3& W3tc
% c
L-#! -#` >r+   