
    fTh                     r    S r SSKJr  SSKJr  SSKJrJr  \R                  " \	5      r
 " S S\\5      rS/rg)zConvNeXTV2 model configuration   )PretrainedConfig)logging)BackboneConfigMixin*get_aligned_output_features_output_indicesc                   L   ^  \ rS rSrSrSr            SU 4S jjrSrU =r$ )ConvNextV2Config   aE  
This is the configuration class to store the configuration of a [`ConvNextV2Model`]. It is used to instantiate an
ConvNeXTV2 model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the ConvNeXTV2
[facebook/convnextv2-tiny-1k-224](https://huggingface.co/facebook/convnextv2-tiny-1k-224) architecture.

Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.

Args:
    num_channels (`int`, *optional*, defaults to 3):
        The number of input channels.
    patch_size (`int`, *optional*, defaults to 4):
        Patch size to use in the patch embedding layer.
    num_stages (`int`, *optional*, defaults to 4):
        The number of stages in the model.
    hidden_sizes (`List[int]`, *optional*, defaults to `[96, 192, 384, 768]`):
        Dimensionality (hidden size) at each stage.
    depths (`List[int]`, *optional*, defaults to `[3, 3, 9, 3]`):
        Depth (number of blocks) for each stage.
    hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
        The non-linear activation function (function or string) in each block. If string, `"gelu"`, `"relu"`,
        `"selu"` and `"gelu_new"` are supported.
    initializer_range (`float`, *optional*, defaults to 0.02):
        The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
    layer_norm_eps (`float`, *optional*, defaults to 1e-12):
        The epsilon used by the layer normalization layers.
    drop_path_rate (`float`, *optional*, defaults to 0.0):
        The drop rate for stochastic depth.
    image_size (`int`, *optional*, defaults to 224):
        The size (resolution) of each image.
    out_features (`List[str]`, *optional*):
        If used as backbone, list of features to output. Can be any of `"stem"`, `"stage1"`, `"stage2"`, etc.
        (depending on how many stages the model has). If unset and `out_indices` is set, will default to the
        corresponding stages. If unset and `out_indices` is unset, will default to the last stage. Must be in the
        same order as defined in the `stage_names` attribute.
    out_indices (`List[int]`, *optional*):
        If used as backbone, list of indices of features to output. Can be any of 0, 1, 2, etc. (depending on how
        many stages the model has). If unset and `out_features` is set, will default to the corresponding stages.
        If unset and `out_features` is unset, will default to the last stage. Must be in the
        same order as defined in the `stage_names` attribute.

Example:
```python
>>> from transformers import ConvNeXTV2Config, ConvNextV2Model

>>> # Initializing a ConvNeXTV2 convnextv2-tiny-1k-224 style configuration
>>> configuration = ConvNeXTV2Config()

>>> # Initializing a model (with random weights) from the convnextv2-tiny-1k-224 style configuration
>>> model = ConvNextV2Model(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config
```
convnextv2c                   > [         TU ]  " S0 UD6  Xl        X l        X0l        Uc  / SQOUU l        Uc  / SQOUU l        X`l        Xpl        Xl	        Xl
        Xl        S/[        S[        U R                  5      S-   5       Vs/ s H  nSU 3PM
     sn-   U l        [        XU R                  S9u  U l        U l        g s  snf )N)`      i  i   )r   r   	   r   stem   stage)out_featuresout_indicesstage_names )super__init__num_channels
patch_size
num_stageshidden_sizesdepths
hidden_actinitializer_rangelayer_norm_epsdrop_path_rate
image_sizerangelenr   r   _out_features_out_indices)selfr   r   r   r   r   r   r   r   r    r!   r   r   kwargsidx	__class__s                  o/var/www/auris/envauris/lib/python3.13/site-packages/transformers/models/convnextv2/configuration_convnextv2.pyr   ConvNextV2Config.__init__T   s      	"6"($$3?3G/\&,nl&$!2,,$"8aT[[IY\]I]@^&_@^se}@^&__0Z%DL\L\1
-D- '`s   B?)r$   r%   r   r    r   r   r!   r   r   r   r   r   r   )r      r,   NNgelug{Gz?g-q=g           NN)	__name__
__module____qualname____firstlineno____doc__
model_typer   __static_attributes____classcell__)r)   s   @r*   r   r      s@    6p J 
 
    r   N)r3   configuration_utilsr   utilsr   utils.backbone_utilsr   r   
get_loggerr/   loggerr   __all__r   r7   r*   <module>r>      sB    % 3  c 
		H	%Z
*,< Z
z 
r7   