
    fTh?                     `    S r SSKJr  SSKJr  \R
                  " \5      r " S S\5      rS/r	g)zBioGPT model configuration   )PretrainedConfig)loggingc                   X   ^  \ rS rSrSrSr                  SU 4S jjrSrU =r$ )BioGptConfig   a0  
This is the configuration class to store the configuration of a [`BioGptModel`]. It is used to instantiate an
BioGPT model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the BioGPT
[microsoft/biogpt](https://huggingface.co/microsoft/biogpt) architecture.

Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.


Args:
    vocab_size (`int`, *optional*, defaults to 42384):
        Vocabulary size of the BioGPT model. Defines the number of different tokens that can be represented by the
        `inputs_ids` passed when calling [`BioGptModel`].
    hidden_size (`int`, *optional*, defaults to 1024):
        Dimension of the encoder layers and the pooler layer.
    num_hidden_layers (`int`, *optional*, defaults to 24):
        Number of hidden layers in the Transformer encoder.
    num_attention_heads (`int`, *optional*, defaults to 16):
        Number of attention heads for each attention layer in the Transformer encoder.
    intermediate_size (`int`, *optional*, defaults to 4096):
        Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
    hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
        The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
        `"relu"`, `"selu"` and `"gelu_new"` are supported.
    hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
        The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
    attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
        The dropout ratio for the attention probabilities.
    max_position_embeddings (`int`, *optional*, defaults to 1024):
        The maximum sequence length that this model might ever be used with. Typically set this to something large
        just in case (e.g., 512 or 1024 or 2048).
    initializer_range (`float`, *optional*, defaults to 0.02):
        The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
    layer_norm_eps (`float`, *optional*, defaults to 1e-12):
        The epsilon used by the layer normalization layers.
    scale_embedding (`bool`, *optional*, defaults to `True`):
        Scale embeddings by diving by sqrt(d_model).
    use_cache (`bool`, *optional*, defaults to `True`):
        Whether or not the model should return the last key/values attentions (not used by all models). Only
        relevant if `config.is_decoder=True`.
    layerdrop (`float`, *optional*, defaults to 0.0):
        Please refer to the paper about LayerDrop: https://arxiv.org/abs/1909.11556 for further details
    activation_dropout (`float`, *optional*, defaults to 0.0):
        The dropout ratio for activations inside the fully connected layer.
    pad_token_id (`int`, *optional*, defaults to 1):
        Padding token id.
    bos_token_id (`int`, *optional*, defaults to 0):
        Beginning of stream token id.
    eos_token_id (`int`, *optional*, defaults to 2):
        End of stream token id.

Example:

```python
>>> from transformers import BioGptModel, BioGptConfig

>>> # Initializing a BioGPT microsoft/biogpt style configuration
>>> configuration = BioGptConfig()

>>> # Initializing a model from the microsoft/biogpt style configuration
>>> model = BioGptModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config
```biogptc                    > Xl         Xl        X l        X0l        X@l        XPl        X`l        Xpl        Xl        Xl	        Xl
        Xl        Xl        Xl        Xl        [        TU ]@  " SUUUS.UD6  g )N)pad_token_idbos_token_ideos_token_id )
vocab_sizemax_position_embeddingshidden_sizenum_hidden_layersnum_attention_headsintermediate_size
hidden_acthidden_dropout_probattention_probs_dropout_probinitializer_rangelayer_norm_epsscale_embedding	use_cache	layerdropactivation_dropoutsuper__init__)selfr   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r
   r   r   kwargs	__class__s                       g/var/www/auris/envauris/lib/python3.13/site-packages/transformers/models/biogpt/configuration_biogpt.pyr   BioGptConfig.__init__^   sv    , %'>$&!2#6 !2$#6 ,H)!2,."""4sl\hslrs    )r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   )i     r      i   gelu皙?r(   r%   g{Gz?g-q=TT        r)             )	__name__
__module____qualname____firstlineno____doc__
model_typer   __static_attributes____classcell__)r!   s   @r"   r   r      sU    AF J %( $'%t %tr$   r   N)
r1   configuration_utilsr   utilsr   
get_loggerr-   loggerr   __all__r   r$   r"   <module>r:      s>    ! 3  
		H	%kt# kt\ 
r$   