
    hy                        S SK Jr  S SKrS SKrS SKJrJr  S SKJr  S SKJ	r	  S SK
Jr  SSKJr  S	S
KJrJr  \R"                  R$                   SS\S\\\\   4   S\\   S\S\4
S jj5       r " S S\R.                  5      rg)    )UnionN)nnTensor)BroadcastingList2)_pair)_assert_has_ops   )_log_api_usage_once   )check_roi_boxes_shapeconvert_boxes_to_roi_formatinputboxesoutput_sizespatial_scalereturnc                    [         R                  R                  5       (       d2  [         R                  R                  5       (       d  [	        [
        5        [        5         [        U5        Un[        U5      n[        U[         R                  5      (       d  [        U5      n[         R                  R                  R                  XX2S   US   5      u  pVU$ )a  
Performs Region of Interest (RoI) Pool operator described in Fast R-CNN

Args:
    input (Tensor[N, C, H, W]): The input tensor, i.e. a batch with ``N`` elements. Each element
        contains ``C`` feature maps of dimensions ``H x W``.
    boxes (Tensor[K, 5] or List[Tensor[L, 4]]): the box coordinates in (x1, y1, x2, y2)
        format where the regions will be taken from.
        The coordinate must satisfy ``0 <= x1 < x2`` and ``0 <= y1 < y2``.
        If a single Tensor is passed, then the first column should
        contain the index of the corresponding element in the batch, i.e. a number in ``[0, N - 1]``.
        If a list of Tensors is passed, then each Tensor will correspond to the boxes for an element i
        in the batch.
    output_size (int or Tuple[int, int]): the size of the output after the cropping
        is performed, as (height, width)
    spatial_scale (float): a scaling factor that maps the box coordinates to
        the input coordinates. For example, if your boxes are defined on the scale
        of a 224x224 image and your input is a 112x112 feature map (resulting from a 0.5x scaling of
        the original image), you'll want to set this to 0.5. Default: 1.0

Returns:
    Tensor[K, C, output_size[0], output_size[1]]: The pooled RoIs.
r   r   )torchjitis_scripting
is_tracingr
   roi_poolr   r   r   
isinstancer   r   opstorchvision)r   r   r   r   roisoutput_s          P/var/www/auris/envauris/lib/python3.13/site-packages/torchvision/ops/roi_pool.pyr   r      s    < 99!!##EII,@,@,B,BH%% D$KdELL))*40		%%..uMWX>[fgh[ijIFM    c                   r   ^  \ rS rSrSrS\\   S\4U 4S jjrS\	S\
\	\\	   4   S\	4S	 jrS\4S
 jrSrU =r$ )RoIPool8   z
See :func:`roi_pool`.
r   r   c                 P   > [         TU ]  5         [        U 5        Xl        X l        g N)super__init__r
   r   r   )selfr   r   	__class__s      r   r'   RoIPool.__init__=   s"    D!&*r    r   r   r   c                 D    [        XU R                  U R                  5      $ r%   )r   r   r   )r(   r   r   s      r   forwardRoIPool.forwardC   s    T%5%5t7I7IJJr    c                 l    U R                   R                   SU R                   SU R                   S3nU$ )Nz(output_size=z, spatial_scale=))r)   __name__r   r   )r(   ss     r   __repr__RoIPool.__repr__F   s;    ~~&&'}T5E5E4FFVW[WiWiVjjklr    )r   r   )r0   
__module____qualname____firstlineno____doc__r   intfloatr'   r   r   listr,   strr2   __static_attributes____classcell__)r)   s   @r   r"   r"   8   s^    +$5c$: +5 +KV K5f1E+F K6 K#  r    r"   )g      ?)typingr   r   torch.fxr   r   torch.jit.annotationsr   torch.nn.modules.utilsr   torchvision.extensionr   utilsr
   _utilsr   r   fxwrapr:   r8   r9   r   Moduler"    r    r   <module>rI      s        3 ( 1 ' F 
 	&&f%&& #3'& 	&
 & &Rbii r    