
    h)                         S SK r S SKr S SK JrJr  S SKJr  S SKJr  SSKJ	r	  SSK
JrJr  \ R                  R                    SS	\S
\S\S\S\S\4S jj5       r " S S\R$                  5      rg)    N)nnTensor)_pair)_assert_has_ops   )_log_api_usage_once   )check_roi_boxes_shapeconvert_boxes_to_roi_formatinputboxesoutput_sizespatial_scalesampling_ratioreturnc                    [         R                  R                  5       (       d2  [         R                  R                  5       (       d  [	        [
        5        [        5         [        U5        Un[        U5      n[        U[         R                  5      (       d  [        U5      n[         R                  R                  R                  XX2S   US   U5      u  pgU$ )a  
Performs Position-Sensitive Region of Interest (RoI) Align operator
mentioned in Light-Head R-CNN.

Args:
    input (Tensor[N, C, H, W]): The input tensor, i.e. a batch with ``N`` elements. Each element
        contains ``C`` feature maps of dimensions ``H x W``.
    boxes (Tensor[K, 5] or List[Tensor[L, 4]]): the box coordinates in (x1, y1, x2, y2)
        format where the regions will be taken from.
        The coordinate must satisfy ``0 <= x1 < x2`` and ``0 <= y1 < y2``.
        If a single Tensor is passed, then the first column should
        contain the index of the corresponding element in the batch, i.e. a number in ``[0, N - 1]``.
        If a list of Tensors is passed, then each Tensor will correspond to the boxes for an element i
        in the batch.
    output_size (int or Tuple[int, int]): the size of the output (in bins or pixels) after the pooling
        is performed, as (height, width).
    spatial_scale (float): a scaling factor that maps the box coordinates to
        the input coordinates. For example, if your boxes are defined on the scale
        of a 224x224 image and your input is a 112x112 feature map (resulting from a 0.5x scaling of
        the original image), you'll want to set this to 0.5. Default: 1.0
    sampling_ratio (int): number of sampling points in the interpolation grid
        used to compute the output value of each pooled output bin. If > 0,
        then exactly ``sampling_ratio x sampling_ratio`` sampling points per bin are used. If
        <= 0, then an adaptive number of grid points are used (computed as
        ``ceil(roi_width / output_width)``, and likewise for height). Default: -1

Returns:
    Tensor[K, C / (output_size[0] * output_size[1]), output_size[0], output_size[1]]: The pooled RoIs
r   r	   )torchjitis_scripting
is_tracingr   ps_roi_alignr   r
   r   
isinstancer   r   opstorchvision)r   r   r   r   r   roisoutput_s           T/var/www/auris/envauris/lib/python3.13/site-packages/torchvision/ops/ps_roi_align.pyr   r      s    J 99!!##EII,@,@,B,BL)% D$KdELL))*40		%%22]NKNNIF M    c                   `   ^  \ rS rSrSrS\S\S\4U 4S jjrS\S\S	\4S
 jr	S	\
4S jrSrU =r$ )
PSRoIAlign>   z
See :func:`ps_roi_align`.
r   r   r   c                 \   > [         TU ]  5         [        U 5        Xl        X l        X0l        g N)super__init__r   r   r   r   )selfr   r   r   	__class__s       r   r&   PSRoIAlign.__init__C   s*     	D!&*,r   r   r   r   c                 Z    [        XU R                  U R                  U R                  5      $ r$   )r   r   r   r   )r'   r   r   s      r   forwardPSRoIAlign.forwardO   s%    E)9)94;M;MtObObccr   c                     U R                   R                   SU R                   SU R                   SU R                   S3nU$ )Nz(output_size=z, spatial_scale=z, sampling_ratio=))r(   __name__r   r   r   )r'   ss     r   __repr__PSRoIAlign.__repr__R   sS    ~~&&' (++,t112 3 34	 	
 r   )r   r   r   )r/   
__module____qualname____firstlineno____doc__intfloatr&   r   r+   strr1   __static_attributes____classcell__)r(   s   @r   r!   r!   >   sX    
-
- 
- 	
-dV d6 df d#  r   r!   )g      ?)r   torch.fxr   r   torch.nn.modules.utilsr   torchvision.extensionr   utilsr   _utilsr
   r   fxwrapr7   r8   r   Moduler!    r   r   <module>rF      s       ( 1 ' F 
 /// / 	/
 / / /d r   