
    JTh                     b    S SK Js  Jr  S SKJr  SSKJr  SS/r " S S\5      r	 " S S\5      r
g)	    N)Tensor   )ModulePairwiseDistanceCosineSimilarityc            	          ^  \ rS rSr% Sr/ SQr\\S'   \\S'   \\S'    SS\S\S\SS	4U 4S
 jjjr	S\
S\
S\
4S jrSrU =r$ )r   
   a  
Computes the pairwise distance between input vectors, or between columns of input matrices.

Distances are computed using ``p``-norm, with constant ``eps`` added to avoid division by zero
if ``p`` is negative, i.e.:

.. math ::
    \mathrm{dist}\left(x, y\right) = \left\Vert x-y + \epsilon e \right\Vert_p,

where :math:`e` is the vector of ones and the ``p``-norm is given by.

.. math ::
    \Vert x \Vert _p = \left( \sum_{i=1}^n  \vert x_i \vert ^ p \right) ^ {1/p}.

Args:
    p (real, optional): the norm degree. Can be negative. Default: 2
    eps (float, optional): Small value to avoid division by zero.
        Default: 1e-6
    keepdim (bool, optional): Determines whether or not to keep the vector dimension.
        Default: False
Shape:
    - Input1: :math:`(N, D)` or :math:`(D)` where `N = batch dimension` and `D = vector dimension`
    - Input2: :math:`(N, D)` or :math:`(D)`, same shape as the Input1
    - Output: :math:`(N)` or :math:`()` based on input dimension.
      If :attr:`keepdim` is ``True``, then :math:`(N, 1)` or :math:`(1)` based on input dimension.

Examples::
    >>> pdist = nn.PairwiseDistance(p=2)
    >>> input1 = torch.randn(100, 128)
    >>> input2 = torch.randn(100, 128)
    >>> output = pdist(input1, input2)
)normepskeepdimr
   r   r   preturnNc                 F   > [         TU ]  5         Xl        X l        X0l        g N)super__init__r
   r   r   )selfr   r   r   	__class__s       Q/var/www/auris/envauris/lib/python3.13/site-packages/torch/nn/modules/distance.pyr   PairwiseDistance.__init__1   s     		    x1x2c                 p    [         R                  " XU R                  U R                  U R                  5      $ r   )Fpairwise_distancer
   r   r   r   r   r   s      r   forwardPairwiseDistance.forward9   s%    ""2499dhhMMr   )r   r   r
   )g       @gư>F)__name__
__module____qualname____firstlineno____doc____constants__float__annotations__boolr   r   r   __static_attributes____classcell__r   s   @r   r   r   
   st    B /M
K	JM BG#(:>	 N& Nf N N Nr   c                   t   ^  \ rS rSr% SrSS/r\\S'   \\S'   SS\S\SS4U 4S jjjr	S\
S	\
S\
4S
 jrSrU =r$ )r   =   aO  Returns cosine similarity between :math:`x_1` and :math:`x_2`, computed along `dim`.

.. math ::
    \text{similarity} = \dfrac{x_1 \cdot x_2}{\max(\Vert x_1 \Vert _2 \cdot \Vert x_2 \Vert _2, \epsilon)}.

Args:
    dim (int, optional): Dimension where cosine similarity is computed. Default: 1
    eps (float, optional): Small value to avoid division by zero.
        Default: 1e-8
Shape:
    - Input1: :math:`(\ast_1, D, \ast_2)` where D is at position `dim`
    - Input2: :math:`(\ast_1, D, \ast_2)`, same number of dimensions as x1, matching x1 size at dimension `dim`,
          and broadcastable with x1 at other dimensions.
    - Output: :math:`(\ast_1, \ast_2)`
Examples::
    >>> input1 = torch.randn(100, 128)
    >>> input2 = torch.randn(100, 128)
    >>> cos = nn.CosineSimilarity(dim=1, eps=1e-6)
    >>> output = cos(input1, input2)
dimr   r   Nc                 :   > [         TU ]  5         Xl        X l        g r   )r   r   r.   r   )r   r.   r   r   s      r   r   CosineSimilarity.__init__W   s    r   r   r   c                 Z    [         R                  " XU R                  U R                  5      $ r   )r   cosine_similarityr.   r   r   s      r   r   CosineSimilarity.forward\   s    ""2488TXX>>r   )r.   r   )r   g:0yE>)r    r!   r"   r#   r$   r%   intr'   r&   r   r   r   r)   r*   r+   s   @r   r   r   =   s[    * ENM	H	JC % 4  
?& ?f ? ? ?r   )torch.nn.functionalnn
functionalr   torchr   moduler   __all__r   r    r   r   <module>r<      s9        1
20Nv 0Nf ?v  ?r   