
    JThZ4                        S r SSKJrJr  SSKJr  SSKJr  SSKrSSK	J
s  Jr  SSKJrJrJrJr  SSKJr  SSKJrJrJrJr  / S	Qr\R4                  R7                  \5        \R4                  R7                  \5        \R4                  R7                  \5        \R4                  R7                  \5         " S
 S\5      r " S S\R:                  5      rS\4S jrS\4S jr g)zCDefines bias subclasses that work with scaled_dot_product_attention    )autoIntEnum)Optional)warnN)can_use_efficient_attentioncan_use_flash_attentionis_flash_attention_available
SDPAParams)_raise_kernel_warnings)_calculate_scale_input_requires_grad_postprocess_flash_output_validate_sdpa_input)causal_upper_leftcausal_lower_rightCausalVariant
CausalBiasc                   4    \ rS rSrSr\" 5       r\" 5       rSrg)r   !   a  
Enum for causal variants used in attention mechanisms.

Defines two types of causal biases:

`UPPER_LEFT`: Represents upper-left triangular bias for standard causal attention.
The equivalent pytorch code for constructing this bias is:

.. code-block:: python

    torch.tril(torch.ones(size, dtype=torch.bool))

For instance, with `shape=(3,4)`, the materialized bias tensor will be:

.. code-block:: text

    [[1, 0, 0, 0],
     [1, 1, 0, 0],
     [1, 1, 1, 0]]


`LOWER_RIGHT`: Represents lower-right triangular bias, the include values are aligned to the lower
right corner of the matrix.

The equivalent pytorch code for constructing this bias is:

.. code-block:: python

    diagonal_offset = size[1] - size[0]
    torch.tril(
        torch.ones(size, dtype=torch.bool),
        diagonal=diagonal_offset,
    )

For instance, with `shape=(3,4)`, the materialized bias tensor will be:

.. code-block:: text

    [[1, 1, 0, 0],
     [1, 1, 1, 0],
     [1, 1, 1, 1]]

Note that these variants are equivalent to each other when the sequence lengths of the query and key/value
tensors are equal since the triangular matrix is square.

.. warning:: This enum is a prototype and subject to change.
 N)	__name__
__module____qualname____firstlineno____doc__r   
UPPER_LEFTLOWER_RIGHT__static_attributes__r       O/var/www/auris/envauris/lib/python3.13/site-packages/torch/nn/attention/bias.pyr   r   !   s    .` J&Kr   r   c                      \ rS rSrSrS\S\S\4S jrS\R                  S\R                  4S	 jrS\R                  S\R                  4S
 jrSS\\R                     S\R                  4S jjr\    SS\R                  S\R                  S\R                  SS S\S\S\\   S\S\R                  4S jj5       r\SS j5       rS rSrg)r   V   a  
A bias representing causal attention patterns. For an overview of the bias structure, see the :class:`CausalVariant` enum.

This class is used for defining causal (triangular) attention biases. For construing the bias, there exist
two factory functions: :func:`causal_upper_left` and :func:`causal_lower_right`.

Example:

.. code-block:: python

    from torch.nn.attention.bias import causal_lower_right

    bsz, num_heads, seqlen_q, seqlen_kv, head_dim = 32, 8, 4, 12, 8

    # Create a lower-right causal bias
    attn_bias = causal_lower_right(seqlen_q, seqlen_kv)

    q = torch.randn(bsz, num_heads, seqlen_q, head_dim, device="cuda", dtype=torch.float16)
    k = torch.randn(bsz, num_heads, seqlen_kv, head_dim, device="cuda", dtype=torch.float16)
    v = torch.randn(bsz, num_heads, seqlen_kv, head_dim, device="cuda", dtype=torch.float16)

    out = F.scaled_dot_product_attention(q, k, v, attn_bias)

.. warning:: This class is a prototype and subject to change.
variant	seq_len_q
seq_len_kvc                     [        U[        5      (       d   eXl        X l        X0l        X#:  a!  U[        R
                  :X  a  [        S5        ggg)a  
Initializes the CausalBias instance with a specified variant and sequence lengths.

Args:
    variant (CausalVariant): The type of causal bias to use (either UPPER_LEFT or LOWER_RIGHT).
    seq_len_q (int): The sequence length of the query tensor.
    seq_len_kv (int): The sequence length of the key/value tensor.

Raises a warning if the LOWER_RIGHT variant is used with seq_len_q > seq_len_kv, as it may produce NaNs.
zTLower right causal bias will produce NaNs in the output when seq_len_q > seq_len_kv!N)
isinstancer   r#   r$   r%   r   r   )selfr#   r$   r%   s       r    __init__CausalBias.__init__q   sM     '=1111"$!g1J1J&Jf 'K!r   devicereturnc           	          [         R                  " [         R                  " U R                  U R                  U[         R
                  S95      $ )zUpper left causal biasr+   dtype)torchtrilonesr$   r%   boolr(   r+   s     r    _upper_leftCausalBias._upper_left   s1    zzJJt~~tvUZZX
 	
r   c           	          U R                   U R                  -
  n[        R                  " [        R                  " U R                  U R                   U[        R
                  S9US9$ )zLower right causal biasr.   )diagonal)r%   r$   r0   r1   r2   r3   )r(   r+   diagonal_offsets      r    _lower_rightCausalBias._lower_right   sK    //DNN:zzJJejj %	
 	
r   Nc                     Uc  [         R                  " S5      nU R                  [        R                  :X  a  U R                  U5      $ U R                  [        R                  :X  a  U R                  U5      $ g)aX  
Materializes the causal bias into a tensor form.

Depending on the variant, this method generates either an upper-left or lower-right
triangular matrix to represent the causal bias.

Args:
    device (Optional[torch.device]): The device on which to create the tensor. Defaults to CPU.

Returns:
    torch.Tensor: The materialized bias tensor.
Ncpu)r0   r+   r#   r   r   r5   r   r:   r4   s     r    _materializeCausalBias._materialize   sb     >\\%(F<<=333##F++\\]666$$V,, 7r   querykeyvalue	attn_mask	dropout_p	is_causalscale
enable_gqac                    U(       a  [        S5      eUR                  UR                  :X  d  UR                  [        R
                  :X  a  [        R                  " U UUSUSUUS9$ UR                  [        R                  :X  GaT  [        XUSXEU5        [        XUSXEU5      n[        U5      (       Ga8  U R                  S5      S-  S:g  n	U R                  S5      n
[        X5      nU	(       a  [        R                  R                   R#                  U SSU R                  S5      S-  -
  45      n [        R                  R                   R#                  USSUR                  S5      S-  -
  45      n[        R                  R                   R#                  USSUR                  S5      S-  -
  45      n[        R$                  R&                  R)                  U UUUSSUS	9S   n[+        X5      $ [-        U5      (       a  Sn[/        XU5      (       a  Sn[        R$                  R&                  R1                  U R3                  S
S5      UR3                  S
S5      UR3                  S
S5      SSSSSU[5        UR                  5      UUSS9S   R3                  S
S5      $ [7        U5        [        R                  " U UUUR9                  U R:                  5      USUUS9$ [        SUR                   35      e)a  
Handles the logic for computing attention with the specified causal bias.

Args:
    query (Tensor): Query tensor; shape :math:`(N, ..., L, E)`.
    key (Tensor): Key tensor; shape :math:`(N, ..., S, E)`.
    value (Tensor): Value tensor; shape :math:`(N, ..., S, Ev)`.
    attn_mask (CausalBias): The type of causal attention to apply.
        A boolean mask where a value of True indicates that the element *should* take part in attention.
        A float mask of the same type as query, key, value that is added to the attention score.
    dropout_p (float): Dropout probability; if greater than 0.0, dropout is applied
    is_causal (bool): If true, assumes upper left causal attention masking and errors if both attn_mask and is_causal
        are set.
    scale (optional float): Scaling factor applied prior to softmax. If None, the default value is set
        to :math:`\frac{1}{\sqrt{E}}`.
    enable_gqa (optional bool): If set to True, Grouped Query Attention (GQA) is enabled, by default it is set to False.

Returns:
    output (Tensor): Attention output; shape :math:`(N, ..., L, Ev)`.

Raises:
    ValueError: If the causal bias variant is not a CausalVariant type.

z.CausalBias should not be used with causal=TrueNT)rC   rD   rE   rF   rG      r   F)rE   return_debug_maskrF         )
biascu_seqlens_qcu_seqlens_kmax_seqlen_qmax_seqlen_krD   custom_mask_typecompute_log_sumexprF   seqlen_kz<CausalBias.variant must be a CausalVariant type, but found: )
ValueErrorr$   r%   r#   r   r   Fscaled_dot_product_attentionr   r   r
   r   sizer   r0   nn
functionalpadopsaten#_scaled_dot_product_flash_attentionr   r   r   _efficient_attention_forward	transposeintr   r>   r+   )r@   rA   rB   rC   rD   rE   rF   rG   sdpa_paramsneeds_paddingog_head_sizeog_scaleoutrT   s                 r    	_dispatchCausalBias._dispatch   s   F MNN 9#7#77  M$<$<<11#%	 	 -";";; UD)PUV$E4zK '{33 %

2 2a 7$zz"~+L@ !HH//33EAq5::b>TUCU?U;VWE((--11#1sxx|a?O;O7PQC!HH//33EAq5::b>TUCU?U;VWEiinnHH"&+" I   1CC*;77%*"'E::)-&yy~~BBOOAq)MM!Q'OOAq)!%!%!%!%'%():):%;'9! C   Yq!_%  '{355'44U\\B'#)	 	 NyO`O`Nab r   c                     Uc  0 nU[         R                  R                  R                  :w  a  [	        S5      eU R
                  " U0 UD6$ )zjDefines the behavior of torch.nn.functional.scaled_dot_product_attention when the attn_bias is an AttnBiasz5CausalBias only supports scaled_dot_product_attention)r0   rZ   r[   rX   NotImplementedErrorrh   )clsfunctypesargskwargss        r    __torch_function__CausalBias.__torch_function__  sL     >F588&&CCC%G  }}d-f--r   c                 >    U R                  5       R                  5       $ N)r>   __repr__)r(   s    r    ru   CausalBias.__repr__$  s      "++--r   )r%   r$   r#   rt   )g        FNF)r   N)r   r   r   r   r   r   rb   r)   r0   r+   Tensorr5   r:   r   r>   staticmethodfloatr3   rh   classmethodrq   ru   r   r   r   r    r   r   V   s(   4 # 3 (
%,, 
5<< 

5<< 
ELL 
-8ELL#9 -U\\ -(  !% m||m\\m ||m  	m
 m m m m 
m m^ . ..r   r   r,   c                  j    [        U 5      S:X  d   S5       eU u  p[        [        R                  X5      $ )a  
Creates an upper-left triangular causal bias.

This function generates a upper-left triangular matrix to represent causal attention bias with a
diagonal offset set so that the inclusive values are aligned to the upper left corner of the matrix.
This equivalent to the `is_causal=True` argument in `scaled_dot_product_attention`.

The equivalent pytorch code for constructing this bias is:

.. code-block:: python

    torch.tril(torch.ones(size, dtype=torch.bool))

For instance, with `shape=(3,4)`, the materialized bias tensor will be:

.. code-block:: text

    [[1, 0, 0, 0],
     [1, 1, 0, 0],
     [1, 1, 1, 0]]

Args:
    size: The size of the bias matrix.

Returns:
    CausalBias: The UPPER_LEFT triangular causal bias variant.
rM   z*causal_upper_left only supports 2D tensors)lenr   r   r   rY   r$   r%   s      r    r   r   (  s5    8 t9>GGG> Im..	FFr   c                  j    [        U 5      S:X  d   S5       eU u  p[        [        R                  X5      $ )a  
Creates a lower-right triangular causal bias.

This function generates a lower-right triangular matrix to represent causal attention bias with a
diagonal offset set so that the inclusive values are aligned to the lower right corner of the matrix.

The equivalent pytorch code for constructing this bias is:

.. code-block:: python

    diagonal_offset = size[1] - size[0]
    torch.tril(
        torch.ones(size, dtype=torch.bool),
        diagonal=diagonal_offset,
    )

For instance, with `shape=(3,4)`, the materialized bias tensor will be:

.. code-block:: text

    [[1, 1, 0, 0],
     [1, 1, 1, 0],
     [1, 1, 1, 1]]

Args:
    size: The size of the bias matrix.

Returns:
    CausalBias: The LOWER_RIGHT triangular causal bias variant.
rM   z+causal_lower_right only supports 2D tensors)r|   r   r   r   r}   s      r    r   r   I  s5    > t9>HHH> Im//GGr   )!r   enumr   r   typingr   warningsr   r0   torch.nn.functionalrZ   r[   rW   torch.backends.cudar   r   r	   r
   torch.nn.attentionr   torch.nn.attention._utilsr   r   r   r   __all___dynamoallow_in_graphr   rw   r   r   r   r   r   r    <module>r      s    I        6  U   9 :   4 5   8 9   Z (2G 2jO. O.dG
 GB!H !Hr   