
    [ThL             	          S r SSKrSSKrSSKrSSKrSSKrSSKrSSKJr  SSKJ	r	  SSK
JrJrJr  SSKrSSKJrJrJrJrJrJrJrJrJr  / SQr  S+S\S	\S
\S\4S jjr\R8                  " S5      \S\\   4S j5       5       r\R8                  " S5      S\\   4S j5       r\R8                  " S5      \S\ \\4   4S j5       5       r!S\4S jr" S,S\\   S\\\/\#4      S\$\   4S jjr%S\S\\   S\4S jr&\" \S5      r'\" \S5      r(\" \S5      r)\R8                  " S5      S\*\ \\$\   4   \ \\4   4   4S j5       r+\S\ \\$\   4   4S j5       r,\S 5       r-\R8                  " S5      S\\   4S j5       r.\S\S\/4S j5       r0S r1 " S  S!5      r2S" r3S# r4S$ r5S% r6\Rn                  S& 5       r8 " S' S(\25      r9\Rn                  S) 5       r:\Rn                  S* 5       r;g)-aE  
Python implementation of ``__torch_function__``

While most of the torch API and handling for ``__torch_function__`` happens
at the C++ level, some of the torch API is written in Python so we need
python-level handling for ``__torch_function__`` overrides as well. The main
developer-facing functionality in this file are handle_torch_function and
has_torch_function. See torch/functional.py and test/test_overrides.py
for usage examples.

Note
----
heavily inspired by NumPy's ``__array_function__`` (see:
https://github.com/pytorch/pytorch/issues/24015 and
https://www.numpy.org/neps/nep-0018-array-function-protocol.html
)

If changing this file in a way that can affect ``__torch_function__`` overhead,
please report the benchmarks in ``benchmarks/overrides_benchmark``. See the
instructions in the ``README.md`` in that directory.
    N)Iterablewraps)AnyCallableOptional)	_add_docstr_get_function_stack_at_has_torch_function_has_torch_function_unary_has_torch_function_variadic_is_torch_function_mode_enabled_len_torch_function_stack_pop_torch_function_stack_push_on_torch_function_stack)
get_ignored_functionsget_overridable_functionsget_testing_overrideshandle_torch_functionhas_torch_functionresolve_nameis_tensor_likeis_tensor_method_or_propertywrap_torch_functionenable_reentrant_dispatchfuncregexmodulereturnc                 8   ^ ^^ [        T 5      U UU4S j5       nU$ )a  
Decorator that temporarily disables ``UserWarning``s for the given ``module`` if the warning message matches the
given ``regex`` pattern.

Arguments
---------
func : function
    Function to disable the warnings for.
regex : str
    A regex pattern compilable by ``re.compile``. This is used to match the ``UserWarning`` message.
module : str
    The python module to which the filtering should be restricted.

Returns
-------
function
    The wrapped function.
c                     > [         R                  " 5          [         R                  " S[        TTS9  T" U 0 UD6sS S S 5        $ ! , (       d  f       g = f)Nignore)categorymessager   )warningscatch_warningsfilterwarningsUserWarning)argskwargsr   r   r   s     G/var/www/auris/envauris/lib/python3.13/site-packages/torch/overrides.pywrapper'_disable_user_warnings.<locals>.wrapperV   sA    $$&##;f ((	 '&&s   #A
Ar   )r   r   r   r,   s   ``` r+   _disable_user_warningsr.   >   s"    0 4[) ) N    c                  #   [         R                  n 1 [         R                  i[         R                  i[         R                  i[         R
                  i[         R                  i[         R                  i[         R                  i[         R                  i[         R                  i[         R                  i[         R                  i[         R                  i[         R                  i[         R                  i[         R                   i[         R"                  i[         R$                  i[         R&                  i[         R(                  i[         R*                  i[         R,                  i[         R.                  i[         R0                  i[         R2                  i[         R4                  i[         R6                  i[         R8                  i[         R:                  i[         R<                  i[         R>                  i[         R@                  i[         RB                  i[         RD                  i[         RF                  i[         RH                  i[         RJ                  i[         RL                  i[         RN                  i[         RP                  i[         RR                  i[         RT                  i[         RV                  i[         RX                  i[         RZ                  i[         R\                  i[         R^                  i[         R`                  i[         Rb                  i[         Rd                  i[         Rf                  i[         Rh                  i[         Rj                  i[         Rl                  i[         Rn                  i[         Rp                  i[         Rr                  i[         Rt                  i[         Rv                  i[         Rx                  i[         Rz                  i[         R|                  i[         R~                  i[         R                  i[         R                  i[         R                  i[         R                  i[         R                  i[         R                  i[         R                  i[         R                  i[         R                  i[         R                  i[         R                  i[         R                  i[         R                  i[         R                  i[         R                  R                  i[         R                  R                  i[         R                  R                  i[         R                  R                  i[         R                  i[         R                  R                  i[         R                  R                  i[         R                  i[         R                  i[         R                  i[         R                  i[         R                  i[         R                  i[         R                  i[         R                  i[         R                  i[         R                  i[         R                  i[         R                  i[         R                  i[         R                  i[         R                  i[         R                  i[         R                  i[         R                  i[         R                  i[         R                  i[         R                  i[         R                  i[         R                  i[         R                  i[         R                  i[         R                  i[         R                  i[         R                  i[         R                  i[         R                  i[         R                  i[         R                  i[         R                  i[         R                  i[         R                  i[         R                  i[         R                  i[         R                  R                  i[         R                  R                  R                  i[         R                  R                  R                  i[         R                  R                  R                  i[         R                  R                  GR                   i[         R                  R                  GR                  i[         R                  R                  GR                  i[         R                  R                  GR                  i[         R                  R                  GR                  i[         R                  R                  GR
                  i[         R                  R                  GR                  i[         R                  R                  GR                  i[         R                  R                  GR                  i[         R                  R                  GR                  i[         R                  GR                  GR                  i[         R                  GR                  GR                  i[         R                  GR                  R                  i[         R                  GR                  GR                  i[         R                  GR                  R                  i[         R                  GR                  GR                  i[         R                  GR                  GR                  i[         R                  GR                  GR                   i[         R                  GR                  GR"                  i[         R                  GR                  GR$                  i[         R                  GR                  GR&                  i[         R                  GR                  GR(                  i[         GR*                  GR,                  iG[        iG[        i[         GR.                  i[         GR0                  i[         GR2                  i[         GR4                  i[         GR6                  i[         GR8                  i[         GR:                  i[         GR<                  i[         GR>                  i[         GR@                  i[         GRB                  i[         GRD                  i[         GRF                  i[         GRH                  i[         GRJ                  i[         GRL                  i[         GRN                  i[         GRP                  i[         GRR                  i[         GRT                  i[         GRV                  i[         GRX                  i[         GRZ                  i[         R                  R                  GR\                  i[         GR^                  i[         GR`                  i[         GRb                  i[         GRd                  i[         GRf                  i[         GRh                  i[         GRj                  i[         GRl                  i[         GRn                  i[         GRp                  i[         GRr                  i[         GRt                  i[         GRv                  i[         GRx                  i[         GRz                  i[         GR|                  i[         GR~                  i[         GR                  i[         GR                  i[         GR                  i[         GR                  iU GR                  iU GR                  iU GR                  iU GR                  iU GR                  iU GR                  iU GR                  iU GR                  iU GR                  iU GR                  iU GR                  iU GR                  iU GR                  iU GR                  iU GR                  iU GR                  iU GR                  iU GR                  iU GR                  iU GR                  iU GR                  iU GR                  iU GR                  iU GR                  iU GR                  iU GR                  iU GR                  iU GR                  iU GR                  iU GR                  iU GR                  iU GR                  iU GR                  iU GR                  iU GR                  iU GR                  iU GR                  iU GR                  iU GR                  iU GR                  iU GR                  iU GR                  iU GR                  iU GR                  iU GR                  iU GR                  iU GR                  iU GR                  GR                  iU GR                  GR                  iU GR                  iU GR                  iU GR                  iU GR                  iU GR                  iU GR                  iU GR                  iU GR                  iU GR,                  iU GR                  i$ )a  
Return public functions that cannot be overridden by ``__torch_function__``.

Returns
-------
set[Callable]
    A tuple of functions that are publicly available in the torch API but cannot
    be overridden with ``__torch_function__``. Mostly this is because none of the
    arguments of these functions are tensors or tensor-likes.

Examples
--------
>>> torch.Tensor.as_subclass in torch.overrides.get_ignored_functions()
True
>>> torch.add in torch.overrides.get_ignored_functions()
False
)torchTensortypename	is_tensor
is_storageset_default_tensor_typeset_default_deviceget_default_deviceset_rng_stateget_rng_statemanual_seedinitial_seedseedsaveloadset_printoptionsforkget_default_dtypeget_num_interop_threadsget_num_threadsinit_num_threadsimport_ir_moduleimport_ir_module_from_bufferis_anomaly_enabledis_anomaly_check_nan_enabledis_grad_enabledmerge_type_from_type_commentparse_irparse_schemaparse_type_commentset_anomaly_enabledset_flush_denormalset_num_interop_threadsset_num_threadswait	as_tensor
from_numpytensordefault_generatorhas_cuda	has_cudnn
has_lapackdevicedtypefinfohas_mklhas_mps
has_mkldnn
has_openmpiinfomemory_formatqschemeset_grad_enabledno_gradenable_gradinference_modeis_inference_mode_enabledlayoutalign_tensorsarange
as_stridedbartlett_windowblackman_windowbroadcast_shapescan_castcompilecudnn_affine_grid_generatorcudnn_batch_normcudnn_convolutioncudnn_convolution_transposecudnn_convolution_relucudnn_convolution_add_relucudnn_grid_samplercudnn_is_acceptableemptyempty_permutedempty_stridedempty_quantizedexportregister_dataclasseyefftfftfreqrfftfreq	from_filefullfillhamming_windowhann_windowkaiser_windowlinspacelogspacemkldnn_adaptive_avg_pool2dmkldnn_convolutionmkldnn_max_pool2dmkldnn_max_pool3dmkldnn_linear_backward_weightsmkldnn_rnn_layernormalonespromote_typesrandrandnrandintrandpermrangeresult_typescalar_tensorsparse_coo_tensorsparse_compressed_tensorsparse_csr_tensorsparse_csc_tensorsparse_bsr_tensorsparse_bsc_tensorsym_constrain_rangesym_constrain_range_for_sizesym_fresh_sizetril_indicestriu_indicesvanderzeros_jit_internalboolean_dispatchnn
functionalassert_int_or_pairupsampleupsample_bilinearupsample_nearestr   has_torch_function_unaryhas_torch_function_variadicr   sigmoidhardsigmoidtanh_canonical_mask_none_or_dtypeinitcalculate_gainuniformconstantdiracxavier_uniformxavier_normalkaiming_uniformkaiming_normal
orthogonalsparsenestedto_padded_tensorset_autocast_enabledis_autocast_enabledset_autocast_dtypeget_autocast_dtypeclear_autocast_cacheset_autocast_cpu_enabledis_autocast_cpu_enabledset_autocast_xla_enabledis_autocast_xla_enabledset_autocast_ipu_enabledis_autocast_ipu_enabledset_autocast_cpu_dtypeget_autocast_cpu_dtypeset_autocast_ipu_dtypeget_autocast_ipu_dtypeget_autocast_gpu_dtypeset_autocast_gpu_dtypeget_autocast_xla_dtypeset_autocast_xla_dtypeautocast_increment_nestingautocast_decrement_nestingis_autocast_cache_enabledset_autocast_cache_enabled	hardswishis_vulkan_available$are_deterministic_algorithms_enableduse_deterministic_algorithms-is_deterministic_algorithms_warn_only_enabledset_deterministic_debug_modeget_device_moduleget_deterministic_debug_modeset_float32_matmul_precisionget_float32_matmul_precisionunify_type_listis_warn_always_enabledset_warn_alwaysvitals_enabled	set_vitalread_vitalsvmapcond
frombufferasarray_functional_sym_constrain_range_make_dep_token__delitem____dir____getattribute____init____iter____init_subclass____delattr____setattr____torch_function____torch_dispatch____new__	__class____subclasshook____hash__as_subclasseiglstsq	reinforcenew
new_tensor	new_emptynew_empty_strided	new_zerosnew_onesnew_full_make_subclasssolvesymeigstride	unflattento_sparse_cooto_sparse_csrto_sparse_cscto_sparse_bsrto_sparse_bsc
_to_sparse_to_sparse_csr_to_sparse_csc_to_sparse_bsr_to_sparse_bsc_typed_storage_reduce_ex_internal_fix_weakref
_view_func_view_func_unsafe_rev_view_func_unsafe_make_wrapper_subclass_python_dispatch__get___has_symbolic_sizes_strides_conj_conj_physical_lazy_clone	_neg_view_is_zerotensor_is_all_true_is_any_true_addmm_activation
_use_countr2   s    r+   r   r   a   s8   ( \\F@@@ 	@ 	%%	@
 	  @ 	  @ 	@ 	@ 	@ 	@ 	

@ 	

@ 	

@ 	@ 	

@  	!@" 	%%#@$ 	%@& 	'@( 	)@* 	**+@, 	  -@. 	**/@0 	1@2 	**3@4 	5@6 	7@8 	  9@: 	!!;@< 	  =@> 	%%?@@ 	A@B 	

C@D 	E@F 	G@H 	I@J 	K@L 	M@N 	O@P 	Q@R 	S@T 	U@V 	W@X 	Y@Z 	[@\ 	]@^ 	_@` 	a@b 	c@d 	e@f 	g@h 	i@j 	k@l 	m@n 	''o@p 	q@r 	s@t 	u@v 	w@x 	y@z 	{@| 	}@~ 	@@ 	A@B 	))C@D 	E@F 	G@H 	))I@J 	$$K@L 	((M@N 	  O@P 	!!Q@R 	S@T 	U@V 	W@X 	Y@Z 	[@\ 	]@^ 	''_@` 	a@b 			c@d 			e@f 			g@h 	i@j 	

k@l 	

m@n 	o@p 	q@r 	s@t 	u@v 	w@x 	((y@z 	  {@| 	}@~ 	@@ 	,,A@B 	C@D 	E@F 	

G@H 	I@J 	

K@L 	M@N 	O@P 	Q@R 	S@T 	U@V 	W@X 	Y@Z 	&&[@\ 	]@^ 	_@` 	a@b 	c@d 	!!e@f 	**g@h 	i@j 	k@l 	m@n 	o@p 	q@r 	,,s@t 	..u@v 	$$w@x 	--y@z 	,,{@| 	..}@~ 	44@@ 	77A@B 	11C@D 	##E@F 	''G@H 	  I@J 	++K@L 	**M@P 	$$Q@T 	U@V 	W@X 	Y@Z 	[@\ 	]@^ 	$$_@` 	##a@b 	%%c@d 	$$e@f 	  g@h 	i@j 	%%k@l 	m@n 	o@p 	""q@r 	!!s@t 	  u@v 	  w@x 	""y@z 	&&{@| 	%%}@~ 	&&@@ 	%%A@B 	&&C@D 	%%E@F 	$$G@H 	$$I@J 	$$K@L 	$$M@N 	$$O@P 	$$Q@R 	$$S@T 	$$U@V 	((W@X 	((Y@Z 	''[@\ 	((]@^ 	%%_@` 	!!a@b 	22c@d 	**e@f 	;;g@h 	**i@j 	k@l 	**m@n 	**o@p 	**q@r 	s@t 	$$u@v 	w@x 	y@z 	{@| 	}@~ 	

@@ 	

A@B 	C@D 	E@F 	--G@H 	I@J 	K@L 	M@N 	O@P 	Q@R 	S@T 	  U@V 	W@X 	Y@Z 	!![@\ 	!!]@^ 	_@` 	a@b 	c@d 	e@f 	g@h 	

i@j 	k@l 	m@n 	

o@p 	q@r 	s@t 	  u@v 	w@x 	y@z 	{@| 	}@~ 	@@ 	A@B 	C@D 	E@F 	G@H 	I@J 	K@L 	M@N 	O@P 	Q@R 	S@T 	U@V 	W@X 	Y@Z 	[@\ 	""]@^ 	_@` 	a@b 	  c@d 	$$e@f 	%%g@h 	''i@j 	**22k@l 	m@n 	o@p 	q@r 	s@t 	u@v 	w@x 	y@z 	  {@| 	}@~ 	@ @r/   c                      [         R                  n U R                  R                  U R                  R                  U R
                  R                  1$ )a  
Return public functions that do not wrap in a subclass when invoked by
the default ``Tensor.__torch_function__`` that preserves subclasses.  Typically,
these functions represent field accesses (i.e., retrieving a Tensor that
is stored somewhere on the Tensor) as opposed to computation.  Users of
these functions expect object identity to be preserved over multiple accesses
(e.g., ``a.grad is a.grad``) which cannot be upheld if we're wrapping on
the fly every time (furthermore, the tensor stored here might already be
the subclass, in which case wrapping really ought not to happen).

Not ALL property accessors have this property; for example ``Tensor.T`` actually
just creates a new transposed tensor on the fly, and so we SHOULD interpose on
these calls (you need to check the implementation of the function to see if
this is the case or not).  Additionally, if a property accessor doesn't return a Tensor,
it doesn't have to be on this list (though it is harmless if it is).
)r1   r2   _baser#  grad_gradr.  s    r+   get_default_nowrap_functionsr3  y  s>    $ \\F r/   c                  t   [         R                  n 0 [         R                  GSS j_[         R                  GSS j_[         R                  S _[         R
                  S _[         R                  GSS j_[         R                  S _[         R                  GSS j_[         R                  GSS	 j_[         R                  GSS
 j_[         R                  GSS j_[         R                  GSS j_[         R                  GSS j_[         R                  GSS j_[         R                  GSS j_[         R                   GSS j_[         R"                  GSS j_[         R$                  S _0 [         R&                  GSS j_[         R(                  GSS j_[         R*                  GSS j_[         R,                  GSS j_[         R.                  GSS j_[         R0                  GSS j_[         R2                  GSS j_[         R4                  GSS j_[         R6                  S _[         R8                  S _[         R:                  GSS j_[         R<                  GSS j_[         R>                  S  _[         R@                  GSS! j_[         RB                  GSS" j_[         RD                  GSS# j_[         RF                  GSS$ j_E0 [         RH                  GSS% j_[         RJ                  GSS& j_[         RL                  GSS' j_[         RN                  GSS( j_[         RP                  GSS) j_[         RR                  S* _[         RT                  S+ _[         RV                  S, _[         RX                  GSS- j_[         RZ                  GSS. j_[         R\                  S/ _[         R^                  S0 _[         R`                  S1 _[         Rb                  S2 _[         Rd                  S3 _[         Rf                  S4 _[         Rh                  S5 _E0 [         Rj                  S6 _[         Rl                  GSS7 j_[         Rn                  S8 _[         Rp                  GSS: j_[         Rr                  GSS; j_[         Rt                  GSS< j_[         Rv                  GSS= j_[         Rx                  GSS> j_[         Rz                  GSS? j_[         R|                  GSS@ j_[         R~                  GSSA j_[         R                  GSSB j_[         R                  SC _[         R                  GSSD j_[         R                  SE _[         R                  SF _[         R                  GSSG j_E0 [         R                  SH _[         R                  GSSI j_[         R                  GSSJ j_[         R                  GSSK j_[         R                  GSSL j_[         R                  GSSM j_[         R                  GSSO j_[         R                  SSP.SQ j_[         R                  SR _[         R                  GSSS j_[         R                  R                  GSST j_[         R                  R                  GSSU j_[         R                  GSSV j_[         R                  GSSW j_[         R                  SX _[         R                  GSSY j_[         R                  GSSZ j_E0 [         R                  GSS[ j_[         R                  GSS\ j_[         R                  GSS] j_[         R                  GSS^ j_[         R                  GSS_ j_[         R                  S` _[         R                  GSSa j_[         R                  Sb _[         R                  GSSc j_[         R                  Sd _[         R                  R                  GSSe j_[         R                  GSSf j_[         R                  GSSg j_[         R                  GSSh j_[         R                  GSSi j_[         R                  GSSj j_[         R                  GSSk j_E0 [         R                  GSSl j_[         R                  GSSm j_[         R                  Sn _[         R                  GSSo j_[         R                  GSSp j_[         R                  GSSq j_[         R                  GSSr j_[         R                  Ss _[         R                  GSSt j_[         R                  GSSu j_[         R                  GSSv j_[         R                  GSSw j_[         R                  Sx _[         R                  GSSy j_[         R                  R                  GSS{ j_[         R                  GSS| j_[         R                  GSS} j_E0 [         R                  GSS~ j_[         R                  GSS j_[         R                  GSS j_[         R                  GSS j_[         R                  GSS j_[         R                  GSS j_[         R                  S _[         R                  S _[         R                  R                  S _[         GR                   S _[         GR                  GSS j_[         GR                  GSS j_[         GR                  GSS j_[         GR                  GSS j_[         GR
                  GSS j_[         R                  GR
                  GSS j_[         GR                  GSS j_E0 [         GR                  GSS j_[         GR                  GSS j_[         GR                  GSS j_[         GR                  GSS j_[         GR                  GSS j_[         GR                  GSS j_[         GR                  GSS j_[         GR                  S _[         GR                  S _[         GR                   S _[         GR"                  GSS j_[         R                  GR$                  GSS j_[         R                  GR&                  GSS j_[         R                  GR(                  GSS j_[         R                  GR*                  GSS j_[         GR,                  S _[         GR.                  GSS j_E0 [         GR0                  GSS j_[         GR2                  GSS j_[         GR4                  GSS j_[         GR6                  S _[         GR8                  GSS j_[         GR:                  GSS j_[         GR<                  GSS j_[         GR>                  GSS j_[         GR@                  GSS j_[         GRB                  GSS j_[         GRD                  S _[         GRF                  S _[         GRH                  GSS j_[         GRJ                  S _[         GRL                  S _[         GRN                  S _[         GRP                  S _E0 [         GRR                  S _[         GRT                  S _[         GRV                  S _[         GRX                  S _[         GRZ                  S _[         GR\                  GR^                  GSS j_[         GR\                  GR`                  GSS j_[         GR\                  GRb                  GSS j_[         GR\                  GRd                  GSS j_[         GR\                  GRf                  GSS j_[         GR\                  GRh                  GSS j_[         GR\                  GRj                  GSS j_[         GR\                  GRl                  GSS j_[         GR\                  GRn                  GSS j_[         GR\                  GRp                  GSS j_[         GR\                  GRr                  GSS j_[         GR\                  GRt                  GSS j_E0 [         GR\                  GRv                  GSS j_[         GR\                  GRx                  GSS j_[         GR\                  GRz                  GSS j_[         GR\                  GR|                  GSS j_[         GR\                  GR~                  GSS j_[         GR\                  GR                  GSS j_[         GR\                  GR                  GSS j_[         GR\                  GR\                  GSS j_[         GR                  GSS j_[         GR                  GSS j_[         GR                  S _[         GR                  S _[         GR                  S _[         GR                  GSS j_[         GR                  GSS j_[         GR                  S _[         GR                  GSS j_E0 [         GR                  GSS j_[         GR                  GSS j_[         GR                  GSS j_[         GR                  SS[         GR                  SS4S j_[         GR                  S _[         GR                  GSS j_[         GR                  GSS j_[         GR                  GSS j_[         GR                  GSS j_[         GR                  S _[         GR                  GSS j_[         GR                  GSS j_[         GR                  GSS j_[         GR                  GSS j_[         GR                  GSS j_[         GR                  GSS j_[         GR                  GSS j_E0 [         GR                  S _[         GR                  S _[         GR                  S _[         GR                  GS S j_[         GR                  S _[         GR                  GSS j_[         GR                  GSS j_[         GR                  GSS j_[         GR                  GSS j_[         GR                  GSS j_[         GR                  GSS j_[         GR                  GSS j_[         GR                  GSS j_[         GR                  GSS j_[         R                  GR                  S _[         GR                  GSS j_[         GR                  S _E0 [         GR                  GSS j_[         GR                  GSS j_[         GR                  GSS j_[         GR                  GSS j_[         GR                  GSS j_[         GR                  S _[         GR                  S _[         GR                  GSS j_[         GR                  GSS j_[         GR                  S _[         GR                  GSS j_[         GR                  GS  _[         GR                  GSGS j_[         GR                  GS _[         GR                  GS _[         GR                  GSGS j_[         GR                  GSGS j_E0 [         GR                  GS _[         GR                   GS _[         GR                  GSGS j_[         R                  GR                  GSGS	 j_[         R                  GR                  GSGS
 j_[         GR                  GS _[         GR
                  GS _[         GR                  GS _[         GR                  GS _[         GR                  GS _[         GR                  GS _[         GR                  GS _[         GR                  GS _[         GR                  GS _[         GR                  GSGS j_[         GR                  GS _[         GR                  GSGS j_E0 [         GR                   GSGS j_[         GR"                  GS _[         GR$                  GSGS j_[         R                  GR&                  GSGS j_[         R                  GR(                  GSGS j_[         R                  GR*                  GSGS j_[         GR,                  GS GS j_[         GR.                  GSGS j_[         GR0                  GSGS j_[         GR2                  GSGS  j_[         GR4                  GSGS! j_[         GR6                  GSGS" j_[         GR8                  GSGS# j_[         GR:                  GS	GS$ j_[         GR<                  GSGS% j_[         GR>                  GSGS& j_[         GR@                  GSGS' j_E0 [         GRB                  GSGS( j_[         GRD                  GSGS) j_[         GRF                  GSGS* j_[         GRH                  GSGS+ j_[         GRJ                  GS, _[         GRL                  GSGS- j_[         GRN                  GSGS. j_[         GRP                  GSGS/ j_[         GRR                  GSGS0 j_[         GRT                  GSGS1 j_[         GRV                  GSGS2 j_[         GRX                  GSGS3 j_[         GRZ                  GS4 _[         GR\                  GSGS5 j_[         GR^                  GSGS6 j_[         GR`                  GSGS7 j_[         GRb                  GS
GS8 j_E0 [         GRd                  GSGS9 j_[         GRf                  GSGS: j_[         GRh                  GS; _[         GRj                  GS< _[         GRl                  GSGS= j_[         GRn                  GSGS> j_[         R                  GRb                  GSGS? j_[         R                  GRp                  GSGS@ j_[         R                  GRr                  GS
GSA j_[         R                  GRd                  GS
GSB j_[         R                  GRn                  GSGSC j_[         GRt                  GSD _[         R                  GRt                  GSGSE j_[         R                  GRv                  GSGSF j_[         R                  GRx                  GSGSG j_[         GRz                  GSH _[         R                  GRz                  GSI _E0 [         GR|                  GSGSJ j_[         GR~                  GSGSK j_[         GR                  GSGSL j_[         GR                  GSGSM j_[         GR                  GSGSN j_[         GR                  GSGSO j_[         GR                  GSGSP j_[         GR                  GSGSQ j_[         GR                  GSGSR j_[         GR                  GSGSS j_[         GR                  GSGST j_[         GR                  GSU _[         GR                  GSGSV j_[         GR                  GSGSW j_[         GR                  GSGSX j_[         GR                  GSY _[         GR                  GSZ _E0 [         GR                  GS[ _[         GR                  GS\ _[         GR                  GS] _[         GR                  GS^ _[         GR                  GS_ _[         GR                  GSGS` j_[         GR                  GSGSa j_[         GR                  GSb _[         GR                  GSc _[         GR                  GSGSd j_[         GR                  GSGSe j_[         GR                  GSGSf j_[         GR                  GSGSg j_[         GR                  GSGSh j_[         GR                  GSi _[         GR                  GSj _[         GR                  GSGSk j_E0 [         GR                  GSl _[         GR                  GSm _[         GR                  GSn _[         GR                  GSGSo j_[         GR                  GSp _[         GR                  GSGSq j_[         GR                  GSr _[         GR                  GSGSs j_[         GR                  GSGSt j_[         GR                  GSGSu j_[         GR                  GSGSv j_[         GR                  GSGSw j_[         GR                  GR                  GR                  GSx _[         GR                  GR                  GR                  GSy _[         GR                  GR                  R
                  GSGSz j_[         GR                  GR                  GR                  GSGS{ j_[         GR                  GR                  GR                  GSGS| j_E0 [         GR                  GR                  GR                  GSGS} j_[         GR                  GR                  GR                  GSGS~ j_[         GR                  GR                  GR                  GSGS j_[         GR                  GR                  GR                  GSGS j_[         GR                  GR                  R*                  GSGS j_[         GR                  GR                  GR                  GSGS j_[         GR                  GR                  GR                  GSGS j_[         GR                  GR                  R\                  GSGS j_[         GR                  GR                  Rn                  GSGS j_[         GR                  GR                  GR                  GSGS j_[         GR                  GR                  Rp                  GSGS j_[         GR                  GR                  R                  GSGS j_[         GR                  GR                  R                  GSGS j_[         GR                  GR                  GR                  GSGS j_[         GR                  GR                  R                  GSGS j_[         GR                  GR                  GR                  GSGS j_[         GR                  GR                  GR                  GSGS j_E0 [         GR                  GR                  GR                  GSGS j_[         GR                  GR                  GR                  GSGS j_[         GR                  GR                  GR                  GSGS j_[         GR                  GR                  GR.                  GSGS j_[         GR                  GR                  GR0                  GSGS j_[         GR                  GR                  GRX                  GSGS j_[         GR                  GR                  GR                  GSGS j_[         GR                  GR                  GR                  GSGS j_[         GR                  GR                  GR                   GSGS j_[         GR                  GR                  GR                  GSGS j_[         GR                  GR                  GR                  GSGS j_[         GR                  GR                  GR                  GSGS j_[         GR                  GR                  GR                  GSGS j_[         GR                  GR                  GR
                  GSGS j_[         GR                  GR                  GR                  GSGS j_[         GR                  GR                  GR                  GSGS j_[         GR                  GR                  GR                  GS GS j_E0 [         GR                  GR                  GR                  GSGS j_[         GR                  GR                  GR                  GS!GS j_[         GR                  GR                  GR                  GSGS j_[         GR                  GR                  GR                  GS"GS j_[         GR                  GR                  GR                  GS#GS j_[         GR                  GR                  GR                   GSGS j_[         GR                  GR                  GR                  GS$GS j_[         GR                  GR                  GR,                  GSGS j_[         GR                  GR                  GR                  GS%GS j_[         GR                  GR                  GR                  GSGS j_[         GR                  GR                  GR                  GS&GS j_[         GR                  GR                  GR>                  GS'GS j_[         GR                  GR                  GR                  GS _[         GR                  GR                  GR                  GSGS j_[         GR                  GR                  GR                   GSGS j_[         GR                  GR                  GR"                  GSGS j_[         GR                  GR                  GRf                  GSGS j_E0 [         GR                  GR                  GR                  GSGS j_[         GR                  GR                  GR                  GSGS j_[         GR                  GR                  GR                  GSGS j_[         GR                  GR                  GR$                  GSGS j_[         GR                  GR                  GR                  GSGS j_[         GR                  GR                  GR&                  GSGS j_[         GR                  GR                  GR(                  GS(GS j_[         GR                  GR                  GR*                  GS(GS j_[         GR                  GR                  GR,                  GS(GS j_[         GR                  GR                  GR.                  GS$GS j_[         GR                  GR                  GR0                  GS)GS j_[         GR                  GR                  GR2                  GS*GS j_[         GR                  GR                  GR4                  GS+GS j_[         GR                  GR                  GR6                  GSGS j_[         GR                  GR                  GR8                  GS,GS j_[         GR                  GR                  GR:                  GS-GS j_[         GR                  GR                  GR<                  GSGS j_E0 [         GR                  GR                  GR>                  GS.GS j_[         GR                  GR                  GR@                  GS/GS j_[         GR                  GR                  GRB                  GS0GS j_[         GR                  GR                  GRD                  GS _[         GR                  GR                  GRF                  GSGS j_[         GR                  GR                  GRH                  GSGS j_[         GR                  GR                  GRJ                  GS1GS j_[         GR                  GR                  GRL                  GS2GS j_[         GR                  GR                  GRN                  GSGS j_[         GR                  GR                  GRP                  GSGS j_[         GR                  GR                  GRR                  GSGS j_[         GR                  GR                  GRT                  GS3GS j_[         GR                  GR                  GRV                  GS4GS j_[         GR                  GR                  GRX                  GS5GS j_[         GR                  GR                  GRZ                  GS+GS j_[         GR                  GR                  GR\                  GS'GS j_[         GR                  GR                  GR^                  GS'GS j_E0 [         GR                  GR                  GR`                  GS6GS j_[         GR                  GR                  GRb                  GSGS j_[         GR                  GR                  GRd                  GS _[         GR                  GR                  GRf                  GS _[         GR                  GR                  GRh                  GSGS j_[         GR                  GR                  GRj                  GS7GS j_[         GR                  GR                  GRl                  SSNSS9GS.GS j_[         GR                  GR                  GRn                  GSGS j_[         GR                  GRp                  GRr                  GS8GS j_[         GR                  GRp                  GRt                  GS8GS j_[         GR                  GRp                  GRv                  GS _[         GR                  GRp                  GRx                  GS9GS j_[         GRz                  GSGS j_[         GR|                  SzGS.GS j_[         GR~                  GS _[         GR                  GS:GS j_[         R                  GR                  GS;GS j_E0 [         R                  GR                  GS<GS j_[         R                  GR                   GS=GS j_[         GR                  GS>GS j_[         GR                  GS:GS j_[         GR                  GS _[         GR                  GS _[         GR                  GS?GS j_[         GR@                  GS/GS j_[         GR                  GS _[         GR                  GS@GS j_[         GR                  GSGS j_[         GR                  GSAGS j_[         R                  GR                  GSBGS j_[         GR                  GS _[         GR                  GS _[         GR                  GSGS j_[         GRB                  GS _E0 [         GR                  GSGS j_[         GR                  GSGS j_[         GRD                  GS _[         GR                  GSGS j_[         GR                  GSGS j_[         GR                  GSGS j_[         GR                  GSGS j_[         GR                  GS _[         GR                  GS _[         GR                  GS _[         GR                  GS  _[         GR                  GS _[         GR                  GSGS j_[         R                  GR                  GSCGS j_[         GR                  GSDGS j_[         GR                  GSDGS j_[         GR                  GS _E0 [         GR                  GS _[         GR                  GS _[         GR                  GS	 _[         GR                  GS
 _[         GR                  GS _[         GR                    GSEGS j_[         GR                    GSFGS j_[         GR                    GSGGS j_[         GR                  GS _[         GR                  GS _[         GR                  GSGS j_[         GR                  GSGS j_[         GR                  S[         GR                  SS4GS j_[         GR                  GSGS j_[         GR                  GS _[         GR                  GSGS j_[         GR                  GSGS j_E0 [         R                  GR                  GSGS j_[         GR                  GS _[         GR                  GS _[         GR                  GSGS j_[         GRF                  GSGS j_[         GR                  GSGS j_[         GR                  GSGS  j_[         GR                  GSGS! j_[         GR                  GS" _[         GRJ                  GS1GS# j_[         GR                  GS$ _[         GR                  GSGS% j_[         GR                  GS& _[         GR                  GSGS' j_[         GR                  GSGS( j_[         GR                  GSHGS* j_[         GR                  GSGS+ j_E0 [         GR                  GSGS, j_[         GR                   GS- _[         GRL                  GS2GS. j_[         GR                  GSGS/ j_[         GR                  GSGS0 j_[         GR                  GSGS1 j_[         GR                  GS2 _[         GR
                  GS3 _[         GR                  GSGS4 j_[         GR                  GSGS5 j_[         GR                  GSIGS6 j_[         GR                  GS7 _[         GR                  GS8 _[         GR                  GSJGS9 j_[         GR                  GSJGS: j_[         GRN                  GSGS; j_[         GR                  GSGS< j_E0 [         GR                  GSGS= j_[         GR                  GSGS> j_[         GR                   GSGS? j_[         GR"                  GSGS@ j_[         GR$                  GSGSA j_[         GR&                  GSGSB j_[         GR(                  GSC _[         R                  GR(                  GSD _[         GR*                  GSE _[         GR,                  GSF _[         GR\                  GSGSG j_[         R                  GR.                  GSGSH j_[         R                  GR0                  GS
GSI j_[         GR2                  GSKSSGSJ.GSK jj_[         GR4                  GSGSL j_[         GR6                  GSGSM j_[         GR8                  GSGSN j_E0 [         GR:                  GSGSO j_[         GR<                  GSGSP j_[         GR>                  GSGSQ j_[         GR@                  GSGSR j_[         GRB                  GSGSS j_[         GRD                  GSGST j_[         GRF                  GSLGSU j_[         GRH                  GSGSV j_[         GRJ                  GSGSW j_[         GRL                  GSGSX j_[         GRN                  GSY _[         GRP                  GSZ _[         GRR                  GS[ _[         GRT                  GS\ _[         GRV                  GS] _[         GRX                  GS^ _[         GRZ                  GS_ _E0 [         GR\                  GS` _[         GR^                  GSa _[         GR`                  GSb _[         GRb                  GSc _[         GRd                  GSd _[         GRf                  GSe _[         GRh                  GSf _[         GRj                  GSg _[         GRl                  GSh _[         GRn                  GSi _[         GRp                  GSGSj j_[         GRr                  GSMGSk j_[         GRt                  GSNGSl j_[         R                  GRr                  GSGSm j_[         R                  GRv                  GSGSn j_[         GRx                  GSo _[         GRz                  GSp _E0 [         GR|                  GR~                  GSq _[         GR|                  GR                  GSr _[         GR|                  GR                  GSs _[         GR|                  GR                  GSt _[         GR|                  GR                  GSu _[         GR|                  GR                  GSGSv j_[         GR|                  GR                  GSGSw j_[         GR|                  GR                  GSGSx j_[         GR|                  GR                  GSGSy j_[         GR|                  GR                  GSz _[         GR|                  GR                  GS{ _[         GR|                  GR8                  GS| _[         GR|                  GR:                  GS} _[         GR|                  GR                  GS~ _[         GR|                  GR<                  GS _[         GR|                  GR@                  GS _[         GR|                  GR                  GS _E0 [         GR|                  GRB                  GS _[         GR|                  GR                  GSGS j_[         GR|                  GR                  GSGS j_[         GR|                  GR                  GS _[         GR|                  GR                  GSGS j_[         GR|                  GR                  GSGS j_[         GR|                  GR                  GS _[         GR|                  GR                  GS _[         GR|                  GR                  GS _[         GR|                  GR                  GS _[         GR|                  GR                  GSGS j_[         GR|                  GR                  GSGS j_[         GR|                  GRB                  GS _[         GR|                  GR                  GS _[         GR|                  GR>                  GSGS j_[         GR|                  GRV                  GS _[         GR|                  GRX                  GSGS j_E0 [         GR|                  GR                  GS _[         GR|                  GR                  GS _[         GR|                  GR                  GS _[         GR|                  GR                  GS _[         GR|                  GR                  GS _[         GR|                  GR                  GS _[         GR|                  GR                  GS _[         GR|                  GR                  GSGS j_[         GR|                  GR                  GS _[         GR|                  GR                  GS _[         GR|                  GR                  GS _[         GR|                  GR                  GS _[         GR|                  GR                  GSGS j_[         GR|                  GR                  GSGS j_[         GR|                  GR                  GSGS j_[         GR|                  GR                  GSGS j_[         GR|                  GR$                  GS _E0 [         GR|                  GR\                  GSGS j_[         GR|                  GR                  GS _[         GR|                  GR                  GSGS j_[         GR|                  GRL                  GSGS j_[         GR|                  GR                  GSGS j_[         GR                  GS _[         GR                  GS _[         GR                  GSGS j_[         GR                  GSGS j_[         GR                  GSGS j_[         R                  GR                  GSGS j_[         R                  GR                  GSGS j_[         GR                  GSOGS j_[         GR                  GSGS j_[         GRh                  GSGS j_[         GR                  GS _[         GR                  GSGS j_E0 [         GR                  GS _[         GR                  GS _[         GR                  GSGS j_[         GR                  GSGS j_[         GR                  GSPGS j_[         R                  GR                  GS?GS j_[         GR                  GSGS j_[         GRj                  GS7GS j_[         GR                  GSGS j_[         GR                  GS _[         GR                  GSGS j_[         GR                  GSGS j_[         GR                  GS _[         GR                  GSQGS j_[         GR                  GSGS j_[         GR                   GS _[         GR                  GSGS j_E0 [         GR                  GSGS j_[         GR                  GSGS j_[         GR                  GSGS j_[         R                  GR
                  GSGS j_[         GR                  GSGS j_[         GR                  GSGS j_[         GR                  GS _[         GR                  GSGS j_[         GR                  GSGS j_[         GR                  GS _[         GR                  GS _[         GR                  GSGS j_[         GR                  GS _[         GR                  GS _[         GR                   GS _[         GR"                  GS _[         GR$                  GS _E0 [         GR&                  GS _[         GR(                  GSGS j_[         GR*                  GS _[         GR,                  GSGS j_[         GR.                  SGS.GS j_[         GR0                  GS _[         GR2                  GS _[         GR4                  GS _[         GR6                  GS _[         GR8                  GS _[         GR:                  GSJGS j_[         GR<                  GSGS j_[         GR>                  GSGS j_[         GR@                  GS _[         GRB                  GS _[         GRD                  GS _[         GRF                  GS _E0 [         GRH                  GS _[         GRJ                  GS _[         GRL                  GS _[         GRN                  GS _[         GRP                  GS _[         GRR                  GS _[         GRT                  GS _[         GRV                  GS _[         GRX                  GSGS j_[         GRZ                  GS _[         GR\                  GS _[         GR^                  GS _U GR`                  GS _U GRb                  GS _U GRd                  GS _U GRf                  GS _U GRh                  GS _E0 U GRj                  GS _U GRl                  GS _U GRn                  GS _U GRp                  GS _U GRr                  GS _U GRt                  GS _U GRv                  GS  _U GRx                  GS _U GRz                  GS _U GR|                  GS _U GR~                  GS _U GR                  GS _U GR                  GS _U GR                  GS _U GR                  GS _U GR                  GS	 _U GR                  GS
 _E0 U GR                  GS _U GR                  GS _U GR                  GS _U GR                  GS _U GR                  GS _U GR                  GS _U GR                  GS _U GR                  GS _U GR                  GS _U GR                  GS _U GR                  GS _U GR                  GS _U GR                  GS _U GR                  SGS.GS j_U GR                  GS _U GR                  GS _U GR                  GR                  GS _E0 U GR                  GR                  GS _U GR                  GR                  GS _U GR                  GR                  GS _U GR                  GR                  GS  _U GR                  GR                  GS! _U GR                  GR                  GS" _U GR                  GR                  GS# _U GR                  GR                  GS$ _U GR                  GR                  GS% _U GR                  GR                  GS& _U GR                  GR                  GS' _U GR                  GR                  GS( _U GR                  GS) _U GR                  GS* _U GR                  GS+ _U GR                  GR                  GS, _U GR                  GR                  GS- _E0 U GR                  GR                  GS. _U GR                  GR                  GS/ _U GR                  GR                  GS0 _U GR                  GR                  GS1 _U GR                  GR                  GS2 _U GR                  GR                  GS3 _U GR                  GR                  GS4 _U GR                  GR                  GS5 _U GR                  GR                  GS6 _U GR                  GR                  GS7 _U GR                  GR                  GS8 _U GR                  GR                  GS9 _U GR                  GR                  GS: _U GR                  GR                  GS; _U GR                  GR                  GS< _U GR                  GR                  GS= _U GR                  GR                  GS> _E0 U GR                  GR                  GS? _U GR                  GR                  GS@ _U GR                  GR                  GSA _U GR                  GR                  GSB _U GR                  GR                  GSC _U GR                  GR                  GSD _U GR                   GR                  GSE _U GR                  GR                  GSF _U GR                  GR                  GSG _U GR                  GR                  GSH _U GR                  GR                  GSI _U GR                  GR                  GSJ _U GR                  GR                  GSK _U GR
                  GR                  GSL _U GR                  GSGSM j_U GR                  GSN _U GR                  GSO _E0 U GR                  GSP _U GR                  GSQ _U GR                  GSR _U GR                  GSS _U GR                  GST _U GR                  GSU _U GR                  GSV _U GR                   GSW _U GR"                  GSX _U R                  GSY _U GR$                  GSZ _U GR&                  GS[ _U GR(                  GS\ _U GR*                  GS] _U GR,                  GS^ _U GR.                  GSGS_ j_U GR0                  [         GR2                  4GS` j_E0 U GR4                  [         GR2                  4GSa j_U GR6                  [         GR2                  4GSb j_U GR8                  [         GR2                  4GSc j_U GR:                  GS)SGSd.GSe jj_U GR<                  GSf _U GR>                  GSg _U GR@                  [         GRB                  4GSh j_U GRD                  GSGSi j_U GRF                  [         GR2                  4GSj j_U GRH                  [         GR2                  4GSk j_U GRJ                  [         GR2                  4GSl j_U GRL                  [         GR2                  4GSm j_U GRN                  [         GR2                  4GSn j_U GRP                  GSo _U GRR                  GSp _U GR                  GSGSq j_U GRT                  GSr _E0 U GRV                  GSGSs j_U GRX                  [         GR2                  4GSt j_U GRZ                  [         GR2                  4GSu j_U GR\                  GSv _U GR^                  GSw _U GR`                  GSx _U GRb                  GSSGSd.GSy jj_U GRd                  GSz _U GRf                  GS{ _U GRh                  [         GR2                  4GS| j_U GRj                  [         GR2                  4GS} j_U GRl                  SGSd.GS~ j_U GR                  GS _U GRn                  [         GR2                  4GS j_U GRp                  [         GR2                  4GS j_U GRr                  GS _U GRt                  GS _E0 U GRv                  [         GR2                  4GS j_U GRx                  GS _U GRz                  GS _U GR                  GS _U GR|                  GS _U GR~                  GS _U GR                  GS _U GR                  GS _U GR                  GSRSGSd.GS jj_U GR>                  GS _U GR                  [         GR2                  4GS j_U GR                  GS _U GR                  GS _U GR                  GS _U GR                  GSGS j_U GR0                  GS _U GR                  GS _E0 U GR                  GS _U GR                  GS _U GR                  GS _U GR                  GS _U GRt                  GS _U GR                  GS _U GR                  GS _U GR                  GS _U GR                  GSGS j_U GR                  GS _U GR                  GSSGSd.GS jj_U GR                  GS _U GR                  GS _U GR                  GS _U GR                  GS _U GR                  GS _U GR                  GS _E0 U GR                  GSGS j_U GR                  GS _U GR                  GS _U GR                  GS _U GR                  GS _U GR                  GS _U GR                  GS _U GR                  GSSGS j_U GR                  GS _U GR                  GS _U GR                  [         GR2                  4GS j_U GR                  GS _U GR                  GSJGS j_U GR                  GS _U GR                  GS _U GR                  GSGS j_U GR                  GS _E0 U GR                  GS _U GR>                  GSGS j_U GR                  GS _U GR                  GS _U GR                  GS _U GR                  GS _U GR                  GS _U GR                  GS _U GR                  SS[         GR2                  4GS j_U GR                  GSSGS.GS jj_U GR                  GSGS j_U GR                  GS _U GR                  GS _U GR                  GS _U GR                  GS _U GRn                  GS _U GRr                  GS)GS j_EU GR                  GS U GR                  GS U GR                  GS U GR                  GS U GR                  GSGS jU GR                  GS [         R                  GR                  GSGS j0En[         GR                  GR                  GR                  nG[        X5      (       a5  GSGS jUG[        X5      '   GS UG[        U GSU 35      GR                  '   0 nG[        5       nUGR                  5        GH  u  pVUGR                  UGR                  GS-   GSUGR                  -   GS-   GSUGR                  -   GS-   GSUGR                  -   GS-   /nUGR                  GR                  GS5      (       aH  UGR                  G[        GS5      S nUGR	                  GSU-   GS-   GSU-   GS-   GSU-   GS-   /5        U H5  n	G[        X	S5      n
G[        U
5      (       d  M#  X;  d  M*  X;  d  M1  XcU
'   M7     GM	     UGR                  U5        U$ (T  a:  Return a dict containing dummy overrides for all overridable functions

Returns
-------
Dict[Callable, Callable]
    A dictionary that maps overridable functions in the PyTorch API to
    lambda functions that have the same signature as the real function
    and unconditionally return -1. These lambda functions are useful
    for testing API coverage for a type that defines ``__torch_function__``.

Examples
--------
>>> import inspect
>>> my_add = torch.overrides.get_testing_overrides()[torch.add]
>>> inspect.signature(my_add)
<Signature (input, other, out=None)>
Nc                     gN inputouts     r+   <lambda>'get_testing_overrides.<locals>.<lambda>      2r/   c                     gr6  r8  r9  s     r+   r<  r=        r/   c                     gr6  r8  r:  output_sizes     r+   r<  r=        br/   c                     gr6  r8  )inputsrC  s     r+   r<  r=        rr/   c                     gr6  r8  r9  s     r+   r<  r=        Br/   c                     gr6  r8  r:  s    r+   r<  r=        Rr/   c                     gr6  r8  r9  s     r+   r<  r=        br/   c                     gr6  r8  r9  s     r+   r<  r=        Rr/   c                     gr6  r8  r9  s     r+   r<  r=        rr/   c                     gr6  r8  r:  otherr;  s      r+   r<  r=        "r/   c                     gr6  r8  r:  batch1batch2alphabetar;  s         r+   r<  r=        rr/   c                     gr6  r8  r:  tensor1tensor2valuer;  s        r+   r<  r=        "r/   c                     gr6  r8  r_  s        r+   r<  r=    rc  r/   c                     gr6  r8  r:  mat1mat2r\  r[  r;  s         r+   r<  r=    rc  r/   c                     gr6  r8  )r:  matvecr\  r[  r;  s         r+   r<  r=        r/   c                     gr6  r8  )r:  vec1vec2r\  r[  r;  s         r+   r<  r=        r/   c                     gr6  r8  thetasizealign_cornerss      r+   r<  r=    rl  r/   c                     gr6  r8  r:  dims     r+   r<  r=    r>  r/   Fc                     gr6  r8  )r:  rU  trolatol	equal_nans        r+   r<  r=        VXr/   c                     gr6  r8  r:  ptraininplaces       r+   r<  r=        Br/   c                     gr6  r8  rw  s     r+   r<  r=    rI  r/   c                     gr6  r8  rw  s     r+   r<  r=    rI  r/   c                     gr6  r8  r:  rx  keepdimr;  s       r+   r<  r=    rl  r/   c                     gr6  r8  r9  s     r+   r<  r=    rP  r/   c                     gr6  r8  r  s       r+   r<  r=    r  r/   c                     gr6  r8  rK  s    r+   r<  r=        Br/   c                     gr6  r8  rK  s    r+   r<  r=    r  r/   c                     gr6  r8  rw  s     r+   r<  r=    rR  r/   c                     gr6  r8  r9  s     r+   r<  r=    rI  r/   c                     gr6  r8  )r:  msgs     r+   r<  r=    r@  r/   c                     gr6  r8  r9  s     r+   r<  r=    rN  r/   c                     gr6  r8  r9  s     r+   r<  r=    rP  r/   c                     gr6  r8  r9  s     r+   r<  r=    rR  r/   c                     gr6  r8  r9  s     r+   r<  r=    rI  r/   c                     gr6  r8  r9  s     r+   r<  r=    rN  r/   c                     gr6  r8  rT  s      r+   r<  r=        Br/   c                     gr6  r8  rT  s      r+   r<  r=        br/   c                     gr6  r8  r9  s     r+   r<  r=    rP  r/   c                     gr6  r8  r9  s     r+   r<  r=    rR  r/   c                      gr6  r8  tensorss    r+   r<  r=    r>  r/   c                      gr6  r8  r  s    r+   r<  r=    r>  r/   c                      gr6  r8  r  s    r+   r<  r=    r>  r/   c                     gr6  r8  )r:  kernel_sizer  padding	ceil_modecount_include_pads         r+   r<  r=        vxr/   c                     gr6  r8  rX  s         r+   r<  r=        PRr/   c	                     gr6  r8  )	r:  weightbiasrunning_meanrunning_vartrainingmomentumepscudnn_enableds	            r+   r<  r=        y{r/   c                     gr6  r8  )grad_outr:  meaninvstdr  sum_dy
sum_dy_xmucount_tensors           r+   r<  r=    r  r/   c                     gr6  r8  )r  r:  r  r  r  input_gweight_gbias_gs           r+   r<  r=        sur/   c                     gr6  r8  )r:  r  r  r  r  r  s         r+   r<  r=    r]  r/   c                     gr6  r8  r:  r  r  r  r  r  r  counts           r+   r<  r=        tvr/   c                     gr6  r8  r  s           r+   r<  r=    	      ACr/   c                     gr6  r8  r:  r  s     r+   r<  r=        2r/   c                     gr6  r8  )r:  r  r  r  s       r+   r<  r=        Z\r/   c                     gr6  r8  )r:  	generatorr;  s      r+   r<  r=        r/   c                     gr6  r8  input1input2r  r  s       r+   r<  r=        Rr/   r  c                     gr6  r8  r:  targetr  size_averagereduce	reduction
pos_weights          r+   r<  r=        rtr/   c                     gr6  r8  )r:  weights	minlengths      r+   r<  r=    r  r/   c                     gr6  r8  )r  probr  s      r+   r<  r=        Br/   c                     gr6  r8  rT  s      r+   r<  r=        "r/   c                     gr6  r8  r9  s     r+   r<  r=    r  r/   c                     gr6  r8  rT  s      r+   r<  r=        r/   c                     gr6  r8  rT  s      r+   r<  r=    r  r/   c                     gr6  r8  rT  s      r+   r<  r=    r  r/   c                     gr6  r8  rT  s      r+   r<  r=        "r/   c                      gr6  r8  r  s    r+   r<  r=    r>  r/   c                     gr6  r8  r:  rh  r;  s      r+   r<  r=        r/   c                      gr6  r8  r  s    r+   r<  r=    rV  r/   c                     gr6  r8  selfrt  s     r+   r<  r=    rR  r/   c                     gr6  r8  )r:  
boundaries	out_int32rightr;  s        r+   r<  r=        []r/   c                      gr6  r8  r  s    r+   r<  r=    rR  r/   c                     gr6  r8  r  rx  r;  s      r+   r<  r=    r  r/   c                     gr6  r8  r  s      r+   r<  r=        rr/   c                     gr6  r8  r  s      r+   r<  r=    r  r/   c                     gr6  r8  )x1x2r  compute_modes       r+   r<  r=        _ar/   c                     gr6  r8  r9  s     r+   r<  r=    rI  r/         ?c                     gr6  r8  r:  r[  r  s      r+   r<  r=    r  r/   )r;  c                     gr6  r8  )r;  matricess     r+   r<  r=        r/   c                     gr6  r8  r:  groupss     r+   r<  r=        Rr/   c                     gr6  r8  r:  upperr;  s      r+   r<  r=    r  r/   c                     gr6  r8  r9  s     r+   r<  r=     r  r/   c                     gr6  r8  r:  check_errorsr;  s      r+   r<  r=        br/   c                     gr6  r8  r  s      r+   r<  r=        Rr/   c                     gr6  r8  )r  r  r  r;  s       r+   r<  r=        Br/   c                     gr6  r8  )r:  numeln_binsratio	bit_widths        r+   r<  r=        WYr/   c                     gr6  r8  r:  chunksrx  s      r+   r<  r=    rV  r/   c                     gr6  r8  r:  minmaxr;  s       r+   r<  r=    r  r/   c                     gr6  r8  r$  s       r+   r<  r=        r/   c                     gr6  r8  )r:  r%  r;  s      r+   r<  r=    r  r/   c                     gr6  r8  )r:  r&  r;  s      r+   r<  r=  	  r  r/   c                     gr6  r8  r  r;  s     r+   r<  r=  
  r  r/   c                     gr6  r8  )r:  
correctionfweightsaweightss       r+   r<  r=        Rr/   c                     gr6  r8  rK  s    r+   r<  r=        2r/   c                     gr6  r8  )r:  rwith_replacements      r+   r<  r=        rr/   c                     gr6  r8  )realimags     r+   r<  r=        "r/   c                     gr6  r8  rT  s      r+   r<  r=    r  r/   c                     gr6  r8  )absangs     r+   r<  r=        br/   c                     gr6  r8  )r:  ords     r+   r<  r=    r  r/   c                     gr6  r8  r9  s     r+   r<  r=    rI  r/   c                     gr6  r8  r9  s     r+   r<  r=    r  r/   c                     gr6  r8  r9  s     r+   r<  r=    r  r/   c                     gr6  r8  r9  s     r+   r<  r=    r  r/   c                     gr6  r8  )r:  padrb  s      r+   r<  r=        2r/   c                     gr6  r8  r:  r  r  r  r  dilationr  s          r+   r<  r=        bdr/   c                     gr6  r8  rK  s          r+   r<  r=    rM  r/   c                     gr6  r8  rK  s          r+   r<  r=    rM  r/   c	                     gr6  r8  )	r:  r  r  r  r  rL  
transposedoutput_addingr  s	            r+   r<  r=        uwr/   c                     gr6  r8  )r:  r  r  rH  s       r+   r<  r=    rI  r/   c                     gr6  r8  r:  r  r  r  r  output_paddingr  rL  s           r+   r<  r=    	      Ar/   c                     gr6  r8  rV  s           r+   r<  r=    rX  r/   c                     gr6  r8  rV  s           r+   r<  r=    rX  r/   c                     gr6  r8  rK  s    r+   r<  r=    r@  r/   c                     gr6  r8  r9  s     r+   r<  r=     r>  r/   c                     gr6  r8  r  r  r  marginr  r  r  s          r+   r<  r=  !  r  r/   c                     gr6  r8  r9  s     r+   r<  r=  "  rI  r/   c                     gr6  r8  )r  r   rx  r  s       r+   r<  r=  #  r  r/   c                     gr6  r8  rK  s    r+   r<  r=  $  r>  r/   c                     gr6  r8  r:  rU  rx  r;  s       r+   r<  r=  %  rD  r/   r7  c                     gr6  r8  rd  s       r+   r<  r=  &      2r/   c                     gr6  r8  	log_probstargetsinput_lengthstarget_lengthsblankr  zero_infinitys          r+   r<  r=  (  r  r/   c                     gr6  r8  r:  rx  r;  s      r+   r<  r=  *  r  r/   c                     gr6  r8  rp  s      r+   r<  r=  +  r  r/   c                     gr6  r8  r:  rx  r;  r\   s       r+   r<  r=  ,  r(  r/   c                     gr6  r8  rs  s       r+   r<  r=  -  rG  r/   c                     gr6  r8  yxrx  s      r+   r<  r=  .  rD  r/   c                     gr6  r8  rp  s      r+   r<  r=  /  r  r/   c                     gr6  r8  r9  s     r+   r<  r=  0  rR  r/   c                     gr6  r8  rK  s    r+   r<  r=  1      r/   c                     gr6  r8  rK  s    r+   r<  r=  2      r/   c                     gr6  r8  rK  s    r+   r<  r=  3  r|  r/   c                     gr6  r8  rK  s    r+   r<  r=  4  r  r/   c                     gr6  r8  r:  diagonalr;  s      r+   r<  r=  5  r	  r/   c                     gr6  r8  r  s      r+   r<  r=  6  rD  r/   c                     gr6  r8  )r:  offsets     r+   r<  r=  7  r@  r/   c                     gr6  r8  )r:  nrx  prependappendr;  s         r+   r<  r=  8      TVr/   c                     gr6  r8  r:  r  dim1dim2s       r+   r<  r=  9  r(  r/   c                     gr6  r8  r  s       r+   r<  r=  :  rp  r/   c                     gr6  r8  )r:  srcr  r  r  s        r+   r<  r=  ;  r1  r/   c                     gr6  r8  )r  r  rt  r  storage_offsets        r+   r<  r=  <  r  r/   c                     gr6  r8  r9  s     r+   r<  r=  =  rR  r/   c                     gr6  r8  )r:  rU  r  s      r+   r<  r=  >  rN  r/   c                     gr6  r8  r:  rU  rounding_moder;  s       r+   r<  r=  ?      br/   c                     gr6  r8  r  s       r+   r<  r=  @  rp  r/   c                     gr6  r8  rT  s      r+   r<  r=  A  rV  r/   c                     gr6  r8  r  s       r+   r<  r=  B  rD  r/   c                     gr6  r8  r:  rh  s     r+   r<  r=  C  r|  r/   c                     gr6  r8  )rg  rh  s     r+   r<  r=  D      rr/   c                     gr6  r8  r:  indices_or_sectionss     r+   r<  r=  E  r  r/   c                     gr6  r8  r,  s     r+   r<  r=  F  r@  r/   c                     gr6  r8  r9  s     r+   r<  r=  G  rV  r/   c                     gr6  r8  r9  s     r+   r<  r=  H  r  r/   c                     gr6  r8  r:  UPLOr;  s      r+   r<  r=  I  r  r/   c                     gr6  r8  r  s      r+   r<  r=  J  r  r/   c                     gr6  r8  )equationoperandss     r+   r<  r=  K  rV  r/   c                     gr6  r8  r:  r  padding_idxmax_norm	norm_typescale_grad_by_freqr   s          r+   r<  r=  M      z|r/   c
                     gr6  r8  )
r:  r  offsetsr  r  r  moder   per_sample_weightsr  s
             r+   r<  r=  P  s	      hjr/   c                     gr6  r8  r:  r\   rj   r[   requires_grads        r+   r<  r=  R      cer/   c                     gr6  r8  rT  s      r+   r<  r=  S  r  r/   c                     gr6  r8  r:  rU  s     r+   r<  r=  T  r;  r/   c                     gr6  r8  r9  s     r+   r<  r=  U  r>  r/   c                     gr6  r8  r9  s     r+   r<  r=  V  rI  r/   c                     gr6  r8  r9  s     r+   r<  r=  W  rN  r/   c                     gr6  r8  r9  s     r+   r<  r=  X  r>  r/   c                     gr6  r8  r9  s     r+   r<  r=  Y  rI  r/   c                     gr6  r8  r9  s     r+   r<  r=  Z  rP  r/   c                     gr6  r8  )r:  scale
zero_pointaxis	quant_min	quant_maxs         r+   r<  r=  [      mor/   c                     gr6  r8  )r:  r  r  r  r  s        r+   r<  r=  \      fhr/   c                     gr6  r8  )rx  observer_onfake_quant_onaveraging_construnning_minrunning_maxr  r  r  r  ch_axisper_row_fake_quantsymmetric_quants                r+   r<  r=  ^  s	      ACr/   c                     gr6  r8  r:  packed_weightr  s      r+   r<  r=  `  r  r/   c                     gr6  r8  r  s      r+   r<  r=  a      \^r/   c                     gr6  r8  r:  r  packedcol_offsetsweight_scaleweight_zero_pointr  s          r+   r<  r=  b      {}r/   c                     gr6  r8  r  s          r+   r<  r=  d      ^`r/   c                     gr6  r8  rK  s    r+   r<  r=  f  rI  r/   c                     gr6  r8  rK  s    r+   r<  r=  g  r  r/   c                     gr6  r8  )r:  abs      r+   r<  r=  h  r(  r/   c                     gr6  r8  r:  r  r  s      r+   r<  r=  i  r  r/   c                     gr6  r8  r  s      r+   r<  r=  j  r  r/   c                     gr6  r8  r:  r  rx  norms       r+   r<  r=  k  r  r/   c                     gr6  r8  r  s       r+   r<  r=  l  r  r/   c                     gr6  r8  r  s       r+   r<  r=  m  r  r/   c                     gr6  r8  r  s       r+   r<  r=  n  r  r/   c                     gr6  r8  r  s       r+   r<  r=  o  r  r/   c                     gr6  r8  r:  srx  r  s       r+   r<  r=  p  rl  r/   c                     gr6  r8  r  s       r+   r<  r=  q  rp  r/   c                     gr6  r8  r  s       r+   r<  r=  r  r  r/   c                     gr6  r8  r  s       r+   r<  r=  s  rf  r/   c                     gr6  r8  r  s       r+   r<  r=  t  rf  r/   c                     gr6  r8  r  s       r+   r<  r=  u  r  r/   c                     gr6  r8  r  s       r+   r<  r=  v  r  r/   c                     gr6  r8  r  s       r+   r<  r=  w  r  r/   c                     gr6  r8  r  s       r+   r<  r=  x  r7  r/   c                     gr6  r8  r  s       r+   r<  r=  y  rl  r/   c                     gr6  r8  r  s       r+   r<  r=  z  rl  r/   c                     gr6  r8  r  s       r+   r<  r=  {  rp  r/   c                     gr6  r8  rw  s     r+   r<  r=  |  r  r/   c                     gr6  r8  rw  s     r+   r<  r=  }  r  r/   c                     gr6  r8  r  s       r+   r<  r=  ~  r(  r/   c                     gr6  r8  r9  s     r+   r<  r=    r>  r/   c                     gr6  r8  )r:  	start_dimend_dims      r+   r<  r=    rD  r/   c                     gr6  r8  r:  dimss     r+   r<  r=    r|  r/   c                     gr6  r8  rK  s    r+   r<  r=    r  r/   c                     gr6  r8  rK  s    r+   r<  r=    r  r/   c                     gr6  r8  r  s       r+   r<  r=    r]  r/   c                     gr6  r8  r9  s     r+   r<  r=    rP  r/   c                     gr6  r8  r  s     r+   r<  r=    r  r/   c                     gr6  r8  r:  exponentr;  s      r+   r<  r=    r  r/   c                     gr6  r8  rT  s      r+   r<  r=    r  r/   c                     gr6  r8  r9  s     r+   r<  r=    rI  r/   c                     gr6  r8  r9  s     r+   r<  r=    rP  r/   c                     gr6  r8  )r:  
fill_valuer;  r\   rj   r[   r  s          r+   r<  r=    s	      BDr/   c                     gr6  r8  )r:  r  	dep_tokens      r+   r<  r=    r  r/   c                     gr6  r8  )LU_data	LU_pivotsunpack_dataunpack_pivotss       r+   r<  r=    r  r/   c                     gr6  r8  )r:  rx  indexr;  sparse_grads        r+   r<  r=    r1  r/   c                     gr6  r8  rT  s      r+   r<  r=    rV  r/   c                     gr6  r8  rT  s      r+   r<  r=    r  r/   c                     gr6  r8  rK  s    r+   r<  r=    r|  r/   c                     gr6  r8  rT  s      r+   r<  r=    r  r/   c                     gr6  r8  r9  s     r+   r<  r=    rP  r/   c                     gr6  r8  r9  s     r+   r<  r=    r;  r/   c                     gr6  r8  rT  s      r+   r<  r=    r  r/   c                     gr6  r8  r:  ro  r;  s      r+   r<  r=    r  r/   c                     gr6  r8  r-  s      r+   r<  r=    r  r/   c                     gr6  r8  )r:  spacingrx  
edge_orders       r+   r<  r=    r  r/   c                     gr6  r8  r:  gridinterpolation_modepadding_moderu  s        r+   r<  r=        acr/   c                     gr6  r8  r3  s        r+   r<  r=        dfr/   c                     gr6  r8  r3  s        r+   r<  r=    r9  r/   c                     gr6  r8  )r:  
num_groupsr  r  r  r  s         r+   r<  r=        kmr/   c	                     gr6  r8  	r:  hxparams
has_biases
num_layersdropoutr  bidirectionalbatch_firsts	            r+   r<  r=        qsr/   c                     gr6  r8  r:  r@  w_ihw_hhb_ihb_hhs         r+   r<  r=    r  r/   c                     gr6  r8  rT  s      r+   r<  r=    r  r/   c                     gr6  r8  rT  s      r+   r<  r=    r  r/   c                     gr6  r8  r:  lambds     r+   r<  r=    r  r/   c                     gr6  r8  )r:  valuesr;  s      r+   r<  r=    r  r/   c                     gr6  r8  r:  r  r_  r  r  r  s         r+   r<  r=        xzr/   c                     gr6  r8  )r:  binsr%  r&  r;  s        r+   r<  r=    r  r/   c                     gr6  r8  )r:  rY  r%  r&  r  densityr;  s          r+   r<  r=    r=  r/   c                     gr6  r8  )r:  rY  r   r  r[  s        r+   r<  r=    r  r/   c                     gr6  r8  r:  taus     r+   r<  r=    r  r/   c                     gr6  r8  )rg  rh  r;  s      r+   r<  r=    rV  r/   c                     gr6  r8  r  s     r+   r<  r=    r  r/   c                     gr6  r8  r,  s     r+   r<  r=    r@  r/   c                     gr6  r8  rT  s      r+   r<  r=    r  r/   c                     gr6  r8  rT  s      r+   r<  r=    r  r/   c                     gr6  r8  rT  s      r+   r<  r=    r  r/   c                     gr6  r8  r9  s     r+   r<  r=    rI  r/   c                     gr6  r8  r:  rx  r#  sources       r+   r<  r=    rI  r/   c                     gr6  r8  rh  s       r+   r<  r=    r  r/   c                     gr6  r8  )r:  indicesrT  
accumulates       r+   r<  r=    rc  r/   c                     gr6  r8  )r:  rx  r#  r;  s       r+   r<  r=    r(  r/   c                     gr6  r8  )r:  rx  r#  rb  s       r+   r<  r=    rI  r/   c                     gr6  r8  )r:  rx  r#  ri  r  include_inputs         r+   r<  r=    r  r/   c                     gr6  r8  rV   s    r+   r<  r=    r  r/   c                     gr6  r8  )eteassume_uniqueinverts       r+   r<  r=    r  r/   c                     gr6  r8  rs  s    r+   r<  r=    r  r/   c                     gr6  r8  rs  s    r+   r<  r=    rL  r/   c                     gr6  r8  r9  s     r+   r<  r=    r@  r/   c                     gr6  r8  r9  s     r+   r<  r=    r@  r/   c	                     gr6  r8  )	r:  r  r  r  r  use_input_statsr  r  r  s	            r+   r<  r=    r  r/   c                     gr6  r8  rK  s    r+   r<  r=    r@  r/   c                     gr6  r8  r9  s     r+   r<  r=    rR  r/   c                     gr6  r8  r9  s     r+   r<  r=    rV  r/   c                     gr6  r8  r  s      r+   r<  r=    rp  r/   c                     gr6  r8  rK  s    r+   r<  r=    r|  r/   c                     gr6  r8  rK  s    r+   r<  r=    rL  r/   c                     gr6  r8  rK  s    r+   r<  r=    r  r/   c                     gr6  r8  rK  s    r+   r<  r=    rI  r/   c                     gr6  r8  rK  s    r+   r<  r=    r;  r/   c                     gr6  r8  rK  s    r+   r<  r=    rR  r/   c                     gr6  r8  rK  s    r+   r<  r=    r|  r/   c                     gr6  r8  r  s     r+   r<  r=    r  r/   c                     gr6  r8  rK  s    r+   r<  r=    r  r/   c                     gr6  r8  )r:  rU  rtolr{  r|  s        r+   r<  r=        UWr/   c                     gr6  r8  rK  s    r+   r<  r=    r3  r/   c
                     gr6  r8  )
r:  n_fft
hop_length
win_lengthwindowcenter
normalizedonesidedlengthreturn_complexs
             r+   r<  r=    	      bdr/   c                     gr6  r8  r:  r  r  r  r  
log_targets         r+   r<  r=    s    prr/   c                     gr6  r8  r  s     r+   r<  r=        r/   c                     gr6  r8  )r:  krx  r  r;  s        r+   r<  r=    r  r/   c                     gr6  r8  )r:  	hermitianr  r;  s       r+   r<  r=    r7  r/   c                     gr6  r8  )r:  r  r;  s      r+   r<  r=    rc  r/   c                     gr6  r8  )LDpivotsBr  r;  s        r+   r<  r=        QSr/   c                     gr6  r8  )r:  normalized_shaper  r  espr  s         r+   r<  r=    rG  r/   c                     gr6  r8  rT  s      r+   r<  r=    rV  r/   c                     gr6  r8  rT  s      r+   r<  r=    r  r/   c                     gr6  r8  rT  s      r+   r<  r=    r  r/   c                     gr6  r8  rT  s      r+   r<  r=    r  r/   c                     gr6  r8  )r:  endr  r;  s       r+   r<  r=    r  r/   c                     gr6  r8  r9  s     r+   r<  r=    rN  r/   c                     gr6  r8  )r:  r  r  Xr  iKnitertollargestmethodtrackerortho_iparamsortho_fparamsortho_bparamss                 r+   r<  r=    s	      IKr/   c                     gr6  r8  r9  s     r+   r<  r=    r>  r/   c                     gr6  r8  r:  rx  r\   s      r+   r<  r=    r  r/   c                     gr6  r8  r9  s     r+   r<  r=    rP  r/   c                     gr6  r8  r9  s     r+   r<  r=    rP  r/   c                     gr6  r8  r9  s     r+   r<  r=    rI  r/   c                     gr6  r8  rT  s      r+   r<  r=    r	  r/   c                     gr6  r8  rT  s      r+   r<  r=    r  r/   c                     gr6  r8  rK  s    r+   r<  r=    r  r/   c                     gr6  r8  )rx  rw  r;  s      r+   r<  r=    rI  r/   c                     gr6  r8  rT  s      r+   r<  r=    r  r/   c                     gr6  r8  r9  s     r+   r<  r=    r  r/   c                     gr6  r8  rT  s      r+   r<  r=    r  r/   c                     gr6  r8  rT  s      r+   r<  r=    r  r/   c                     gr6  r8  r  s     r+   r<  r=    rP  r/   c                     gr6  r8  )r:  namesr  r;  s       r+   r<  r=    r7  r/   c	                     gr6  r8  )	databatch_sizesr@  rA  rB  rC  rD  r  rE  s	            r+   r<  r=    rG  r/   c                     gr6  r8  rI  s         r+   r<  r=    r1  r/   c                     gr6  r8  rT  s      r+   r<  r=    r  r/   c                     gr6  r8  rT  s      r+   r<  r=    r  r/   c                     gr6  r8  )Apivot	get_infosr;  s       r+   r<  r=    rf  r/   c                     gr6  r8  )r  r  r  r;  s       r+   r<  r=    r(  r/   c                     gr6  r8  r^  s          r+   r<  r=    rX  r/   c                     gr6  r8  )r:  maskrb  s      r+   r<  r=    r  r/   c                     gr6  r8  )r:  r  ri  s      r+   r<  r=    r  r/   c                     gr6  r8  )r:  r  r;  s      r+   r<  r=    rI  r/   c                     gr6  r8  rT  s      r+   r<  r=    r  r/   c                     gr6  r8  r:  r  r;  s      r+   r<  r=    r  r/   c                     gr6  r8  r  s      r+   r<  r=    r  r/   c                     gr6  r8  )r:  r  r  r;  s       r+   r<  r=    r  r/   c                     gr6  r8  )LUr  r  leftadjointr;  s         r+   r<  r=        Y[r/   c                     gr6  r8  rT  s      r+   r<  r=    r  r/   c                     gr6  r8  )r:  r  s     r+   r<  r=    rP  r/   c                     gr6  r8  r:  r  r;  s      r+   r<  r=    rD  r/   c                     gr6  r8  )r:  r  r  s      r+   r<  r=        2r/   c                     gr6  r8  r,  s     r+   r<  r=     r  r/   c                     gr6  r8  rK  s    r+   r<  r=    r|  r/   c                     gr6  r8  rK  s    r+   r<  r=    rR  r/   c                     gr6  r8  r9  s     r+   r<  r=    r>  r/   c                     gr6  r8  rT  s      r+   r<  r=    r  r/   c                     gr6  r8  rT  s      r+   r<  r=    r  r/   c                     gr6  r8  r:  r  r  r  rL  r  s         r+   r<  r=        jlr/   c                     gr6  r8  r  s         r+   r<  r=    r  r/   c                     gr6  r8  r  s         r+   r<  r=    r  r/   c                     gr6  r8  r:  r  r  r  rL  return_indicesr  s          r+   r<  r=  
  r  r/   c                     gr6  r8  rw  s     r+   r<  r=    rI  r/   c                     gr6  r8  )r:  rx  r  r\   r;  s        r+   r<  r=    r  r/   c                     gr6  r8  rw  s     r+   r<  r=    rN  r/   c                     gr6  r8  rw  s     r+   r<  r=    r  r/   c                      gr6  r8  )r  r*   s     r+   r<  r=    r  r/   c                     gr6  r8  r9  s     r+   r<  r=    r>  r/   c                     gr6  r8  rT  s      r+   r<  r=    r  r/   c                     gr6  r8  rT  s      r+   r<  r=    r  r/   c                     gr6  r8  )r:  r  r  r  r  r  exponential_average_factorepsilons           r+   r<  r=    r  r/   c	                     gr6  r8  	r:  r  r  r  r  rL  r  	benchmarkdeterministics	            r+   r<  r=    r  r/   c	                     gr6  r8  )	r:  r  zr[  r  r  r  rL  r  s	            r+   r<  r=    r  r/   c                     gr6  r8  rK  s          r+   r<  r=    r  r/   c
                     gr6  r8  )
r:  r  r  r  rW  r  rL  r  r  r  s
             r+   r<  r=    rS  r/   c	                     gr6  r8  r
  s	            r+   r<  r=        egr/   c                     gr6  r8  )r:  r  weight_stride0r@  cxr  hidden_sizerC  rF  rD  r  rE  r  dropout_states                 r+   r<  r=  !  r  r/   c                     gr6  r8  r  s      r+   r<  r=  #  r@  r/   c                     gr6  r8  r  s       r+   r<  r=  $  rf  r/   c                     gr6  r8  r:  ri  destinations      r+   r<  r=  %  r  r/   c                     gr6  r8  r  s      r+   r<  r=  &  rI  r/   c                     gr6  r8  )r:  
descendingr;  s      r+   r<  r=  '  rG  r/   c                     gr6  r8  rT  s      r+   r<  r=  (  rV  r/   c                     gr6  r8  rT  s      r+   r<  r=  )  r  r/   c                     gr6  r8  )r:  num_samplesreplacementr;  s       r+   r<  r=  *      SUr/   c                     gr6  r8  )r:  rk  r;  s      r+   r<  r=  +  rR  r/   c                     gr6  r8  r:  r  s     r+   r<  r=  ,  r  r/   c                     gr6  r8  )r:  rx  startr  s       r+   r<  r=  -  r	  r/   c                     gr6  r8  )r:  nanposinfneginfr;  s        r+   r<  r=  .  r  r/   c                     gr6  r8  )r:  r  r  r  r  r  r  r  s           r+   r<  r=  /  rG  r/   c                     gr6  r8  )r:  r  r  r  r  r  s         r+   r<  r=  0      ]_r/   c                     gr6  r8  r  s      r+   r<  r=  1  r  r/   c                     gr6  r8  r:  r  r  r  r  s        r+   r<  r=  2  r9  r/   c                     gr6  r8  )r:  r  r  NCHxWgroupr  s           r+   r<  r=  3  r  r/   c                     gr6  r8  )r:  r  rx  r  r\   s        r+   r<  r=  4  r%  r/   c                     gr6  r8  r  s     r+   r<  r=  5  r  r/   c                     gr6  r8  rT  s      r+   r<  r=  6  r  r/   c                     gr6  r8  rT  s      r+   r<  r=  7  r	  r/   c                     gr6  r8  r9  s     r+   r<  r=  8  r>  r/   c                     gr6  r8  r9  s     r+   r<  r=  9  r@  r/   c                     gr6  r8  rT  s      r+   r<  r=  :  r	  r/   c                     gr6  r8  rB  s     r+   r<  r=  ;  r  r/   c                     gr6  r8  rB  s     r+   r<  r=  <  r  r/   c                     gr6  r8  r:  rC  r  s      r+   r<  r=  =  rM  r/   c                     gr6  r8  rD  s      r+   r<  r=  >      oqr/   c                     gr6  r8  rD  s      r+   r<  r=  ?  rM  r/   c                     gr6  r8  rD  s      r+   r<  r=  @  rF  r/   c                     gr6  r8  rD  s      r+   r<  r=  A  rM  r/   c                     gr6  r8  rD  s      r+   r<  r=  B  rF  r/   c                     gr6  r8  rr  s      r+   r<  r=  C  r  r/   c                     gr6  r8  r:  r  r  r  s       r+   r<  r=  D  r  r/   c                     gr6  r8  r:  r  r  r  r  r  divisor_overrides          r+   r<  r=  F  	      @Br/   c                     gr6  r8  rO  s          r+   r<  r=  I  rQ  r/   c                     gr6  r8  )r:  r  r  r  r  r  r  r  s           r+   r<  r=  L  r  r/   c                     gr6  r8  r  s       r+   r<  r=  N  r  r/   c                     gr6  r8  r:  r  r  r  r  r  s         r+   r<  r=  P  r7  r/   c                     gr6  r8  r  s          r+   r<  r=  S  r  r/   c                     gr6  r8  r  s      r+   r<  r=  U  rc  r/   c                     gr6  r8  r^  s          r+   r<  r=  W      gir/   c                     gr6  r8  )r:  r  r  r  ignore_indexr  r  label_smoothings           r+   r<  r=  Z  	      JLr/   c                     gr6  r8  rh  s          r+   r<  r=  ]  r  r/   c                     gr6  r8  rM  s       r+   r<  r=  _      XZr/   c                     gr6  r8  rM  s       r+   r<  r=  `  r  r/   c                     gr6  r8  rM  s       r+   r<  r=  a  r  r/   c                     gr6  r8  rM  s       r+   r<  r=  b  r  r/   c                     gr6  r8  r  s      r+   r<  r=  c  rp  r/   c                     gr6  r8  r  s          r+   r<  r=  e  r  r/   c                     gr6  r8  )r:  r  r  r  r  r  r  r   r  include_last_offsetr  s              r+   r<  r=  h  s	      HJr/   c                     gr6  r8  rM  s       r+   r<  r=  j  rZ  r/   c                     gr6  r8  )r:  rC  r  rL  r  r  s         r+   r<  r=  k  r=  r/   c                     gr6  r8  r:  r  rC  output_ratior  _random_sampless         r+   r<  r=  m  rW  r/   c                     gr6  r8  rl  s         r+   r<  r=  p  rW  r/   c                     gr6  r8  rl  s         r+   r<  r=  s  rW  r/   c                     gr6  r8  rl  s         r+   r<  r=  v  rW  r/   c                     gr6  r8  )r:  r  varr   r  r  s         r+   r<  r=  x  r  r/   c                     gr6  r8  )r:  approximates     r+   r<  r=  y  r  r/   c                     gr6  r8  rw  s     r+   r<  r=  z  r  r/   c                     gr6  r8  )r:  r4  r  r6  ru  s        r+   r<  r=  {  rW  r/   c                     gr6  r8  )r:  r<  r  r  r  s        r+   r<  r=  |  r  r/   c                     gr6  r8  )logitsr_  hardr  rx  s        r+   r<  r=  }  r7  r/   c                     gr6  r8  rQ  s     r+   r<  r=  ~  r  r/   c                     gr6  r8  )r:  min_valmax_valr  s       r+   r<  r=    r  r/   c                     gr6  r8  rV  s         r+   r<  r=        `br/   c                     gr6  r8  )r:  r  r  r  r  r~  r  r  s           r+   r<  r=    s	      GIr/   c                     gr6  r8  )r:  rt  scale_factorr  ru  recompute_scale_factor	antialiass          r+   r<  r=    s	      KMr/   c                     gr6  r8  r  s         r+   r<  r=    rX  r/   c                     gr6  r8  r:  r  r  r  r  r  s         r+   r<  r=    r  r/   c                     gr6  r8  r4  s        r+   r<  r=    r=  r/   c                     gr6  r8  )r:  negative_sloper  s      r+   r<  r=    r  r/   c                     gr6  r8  )r:  r  r  s      r+   r<  r=    r  r/   c                     gr6  r8  )r:  rt  r[  r\  r  s        r+   r<  r=    r  r/   c                     gr6  r8  r:  rx  _stacklevelr\   s       r+   r<  r=    r  r/   c                     gr6  r8  rK  s    r+   r<  r=    r  r/   c                     gr6  r8  r:  r  r  r  r  s        r+   r<  r=    r=  r/   c                     gr6  r8  r  s        r+   r<  r=    r=  r/   c                     gr6  r8  r  s        r+   r<  r=    r=  r/   c                     gr6  r8  r^  s          r+   r<  r=    rZ  r/   c                     gr6  r8  r:  r  r  r  rL  r  r  s          r+   r<  r=    r  r/   c                     gr6  r8  r  s          r+   r<  r=    r  r/   c                     gr6  r8  r  s          r+   r<  r=    r  r/   c                     gr6  r8  r  s          r+   r<  r=    r  r/   c                     gr6  r8  r  s          r+   r<  r=    r  r/   c                     gr6  r8  r  s          r+   r<  r=    r  r/   c                     gr6  r8  r:  rl  r  r  r  rC  s         r+   r<  r=    rW  r/   c                     gr6  r8  r  s         r+   r<  r=    rW  r/   c                     gr6  r8  r  s         r+   r<  r=    rW  r/   c                     gr6  r8  r  s         r+   r<  r=    r  r/   c                     gr6  r8  )querykeyrb  embed_dim_to_check	num_headsin_proj_weightin_proj_biasbias_kbias_vadd_zero_attn	dropout_pout_proj_weightout_proj_biasr  key_padding_maskneed_weights	attn_maskuse_separate_proj_weightq_proj_weightk_proj_weightv_proj_weightstatic_kstatic_vaverage_attn_weights	is_causals                            r+   r<  r=    s	      ]_r/   c                     gr6  r8  )r:  r  r  r_  r  r  r  r  s           r+   r<  r=    r  r/   c                     gr6  r8  r:  r  r  r  r  s        r+   r<  r=    r  r/   c                     gr6  r8  rV  s         r+   r<  r=    r7  r/   c                     gr6  r8  )r:  r  r  r  r\  r  r  s          r+   r<  r=    r  r/   c                     gr6  r8  )r:  r  rx  r  r;  s        r+   r<  r=    r}  r/   c                     gr6  r8  )rV   num_classess     r+   r<  r=    r  r/   c                     gr6  r8  )r:  rH  r  rb  s       r+   r<  r=    r  r/   c                     gr6  r8  r  r   r  r  r  s        r+   r<  r=    r  r/   c                     gr6  r8  )r:  r  	log_inputr   r  r  r  r  s           r+   r<  r=    r  r/   c                     gr6  r8  r:  r  s     r+   r<  r=    r  r/   c                     gr6  r8  r:  r  s     r+   r<  r=    rG  r/   c                     gr6  r8  r  s     r+   r<  r=    r(  r/   c                     gr6  r8  r:  r  r  r  s       r+   r<  r=    r1  r/   c                     gr6  r8  r:  lowerr  r  r  s        r+   r<  r=    s    wyr/   c                     gr6  r8  r  s     r+   r<  r=    rG  r/   c                     gr6  r8  r  s     r+   r<  r=    rG  r/   c                     gr6  r8  r  s     r+   r<  r=    rG  r/   c                     gr6  r8  )r  r  rb  r  r  s        r+   r<  r=    r  r/   c                     gr6  r8  )r:  r  r  r  r  r\  s         r+   r<  r=    rX  r/   c                     gr6  r8  )r:  r  r  deltar  s        r+   r<  r=    s    hjr/   c                     gr6  r8  r  s        r+   r<  r=    r  r/   c                     gr6  r8  r  s       r+   r<  r=    ra  r/   c                     gr6  r8  r  s       r+   r<  r=    ra  r/   c                     gr6  r8  )r:  r\  	thresholds      r+   r<  r=    rc  r/   c                     gr6  r8  rQ  s     r+   r<  r=    r  r/   c                     gr6  r8  rK  s    r+   r<  r=    r  r/   c                     gr6  r8  rK  s    r+   r<  r=    r  r/   c                     gr6  r8  r:  r  rb  r  s       r+   r<  r=    r}  r/   c
                     gr6  r8  
anchorpositivenegativer_  r  r  swapr  r  r  s
             r+   r<  r=    r^  r/   )distance_functionr_  r  r  c                    gr6  r8  )r  r  r  r  r_  r  r  s          r+   r<  r=    r  r/   c                     gr6  r8  )r:  r  rL  r  r  s        r+   r<  r=    r  r/   c                     gr6  r8  )rV   r  r  r  s       r+   r<  r=    r1  r/   c                     gr6  r8  )rV   r  stdr  s       r+   r<  r=    r  r/   c                     gr6  r8  )rV   vals     r+   r<  r=    r  r/   c                     gr6  r8  )rV   r  r  nonlinearityr  s        r+   r<  r=    r  r/   c                     gr6  r8  )r:  as_tuples     r+   r<  r=    r  r/   )r  c                    gr6  r8  )r:  rt  r  s      r+   r<  r=    r  r/   c                     gr6  r8  rK  s    r+   r<  r=    r@  r/   c                     gr6  r8  r:  r  rx  r  r;  r\   s         r+   r<  r=    r  r/   c                     gr6  r8  r:  rB  rx  r  r;  r\   s         r+   r<  r=    rM  r/   c                     gr6  r8  r  s         r+   r<  r=    r  r/   c                     gr6  r8  r  s         r+   r<  r=    s     13r/   c                     gr6  r8  )vpowrx  s      r+   r<  r=    r  r/   c                     gr6  r8  r  s         r+   r<  r=    rM  r/   c                     gr6  r8  rK  s    r+   r<  r=    r3  r/   c                     gr6  r8  r^  s     r+   r<  r=    r|  r/   c                     gr6  r8  )r:  r  input3r  	transposes        r+   r<  r=    r]  r/   c                     gr6  r8  r  s        r+   r<  r=    r  r/   c                     gr6  r8  r  rx  s     r+   r<  r=    r  r/   c                     gr6  r8  )r:  qr  r  s       r+   r<  r=    r7  r/   c                     gr6  r8  r(  s     r+   r<  r=    r|  r/   c                     gr6  r8  )r:  rconds     r+   r<  r=    r  r/   c                     gr6  r8  )r:  r  r  s      r+   r<  r=    r7  r/   c                     gr6  r8  )r:  upscale_factors     r+   r<  r=    rI  r/   c                     gr6  r8  )r:  downscale_factors     r+   r<  r=    rG  r/   c                     gr6  r8  )r:  r  s     r+   r<  r=    r  r/   c                     gr6  r8  )r:  r  r  r   r  r  s         r+   r<  r=    r  r/   c                     gr6  r8  r  s      r+   r<  r=    r  r/   c                     gr6  r8  r9  s     r+   r<  r=    r@  r/   c                     gr6  r8  r  s     r+   r<  r=    r>  r/   c                     gr6  r8  r  s        r+   r<  r=    rM  r/   c                     gr6  r8  r  s      r+   r<  r=    r  r/   c                     gr6  r8  )r:  r\   s     r+   r<  r=    rN  r/   c                     gr6  r8  )r:  r#  ri  rm  s       r+   r<  r=     r  r/   c                     gr6  r8  rK  s    r+   r<  r=    r@  r/   c                     gr6  r8  rK  s    r+   r<  r=    rV  r/   c                     gr6  r8  rK  s    r+   r<  r=    r  r/   c                     gr6  r8  rK  s    r+   r<  r=    rL  r/   c                     gr6  r8  rK  s    r+   r<  r=    r;  r/   c                     gr6  r8  )r:  somer;  s      r+   r<  r=    r  r/   c                     gr6  r8  )r:  r  r;  s      r+   r<  r=    r  r/   c                     gr6  r8  r:  r  rx  r  interpolationr;  s         r+   r<  r=    r9  r/   c                     gr6  r8  r&  s         r+   r<  r=  	  rZ  r/   c                     gr6  r8  )r:  scaleszero_pointsr  r\   s        r+   r<  r=  
  r  r/   c                     gr6  r8  )r:  r  r  r\   s       r+   r<  r=    r  r/   c                     gr6  r8  )r:  r\   reduce_ranges      r+   r<  r=    r  r/   c                     gr6  r8  )r:  r  r  r  rs  r  output_scaleoutput_zero_points           r+   r<  r=    rG  r/   c                     gr6  r8  r:  r@  rJ  rK  rL  rM  	packed_ih	packed_hhcol_offsets_ihcol_offsets_hhscale_ihscale_hhzero_point_ihzero_point_hhs                 r+   r<  r=    	      _ar/   c                     gr6  r8  r3  s                 r+   r<  r=    r<  r/   r      c                     gr6  r8  r  s         r+   r<  r=    s     "r/   c                     gr6  r8  r  s         r+   r<  r=    s     !#r/   c                     gr6  r8  r  s         r+   r<  r=     s     !#r/   c                     gr6  r8  r3  s                 r+   r<  r=  '  r<  r/   c                     gr6  r8  r3  s                 r+   r<  r=  *  r<  r/   c                     gr6  r8  r9  s     r+   r<  r=  ,  rR  r/   c                     gr6  r8  r  s        r+   r<  r=  -  rM  r/   c                     gr6  r8  )r:  highr\   rj   r[   r  s         r+   r<  r=  .  r  r/   c                     gr6  r8  r  s        r+   r<  r=  /  r  r/   c                     gr6  r8  rK  s    r+   r<  r=  0  r3  r/   c                     gr6  r8  r9  s     r+   r<  r=  1  rI  r/   c                     gr6  r8  rT  s      r+   r<  r=  2  r  r/   c                     gr6  r8  rd  s       r+   r<  r=  3  r  r/   c                     gr6  r8  rK  s    r+   r<  r=  4  r;  r/   c                     gr6  r8  rK  s    r+   r<  r=  5  rP  r/   c                     gr6  r8  r9  s     r+   r<  r=  6  rV  r/   c                     gr6  r8  r  s     r+   r<  r=  7  r  r/   c                     gr6  r8  rT  s      r+   r<  r=  8  r	  r/   c                     gr6  r8  )r:  r  rx  maxnormr;  s        r+   r<  r=  9  rG  r/   c                     gr6  r8  rw  s     r+   r<  r=  :  r  r/   c                     gr6  r8  )r:  shapes     r+   r<  r=  ;  rI  r/   c                     gr6  r8  r  s       r+   r<  r=  <  r]  r/   c	                     gr6  r8  r?  s	            r+   r<  r=  =  r  r/   c                     gr6  r8  rI  s         r+   r<  r=  >  r  r/   c	                     gr6  r8  r?  s	            r+   r<  r=  ?  r  r/   c                     gr6  r8  rI  s         r+   r<  r=  @  r  r/   c                     gr6  r8  )r:  shiftsr  s      r+   r<  r=  A  r  r/   r   r@  c                     gr6  r8  )r:  r  r  s      r+   r<  r=  B  r  r/   c                     gr6  r8  r9  s     r+   r<  r=  C  rP  r/   c                     gr6  r8  r,  s     r+   r<  r=  D  r  r/   c                     gr6  r8  )r  r  compressed_indices_dtypes      r+   r<  r=  E  r  r/   c                     gr6  r8  r  s        r+   r<  r=  F  r  r/   c                     gr6  r8  r9  s     r+   r<  r=  G  rP  r/   c                     gr6  r8  )r:  rU  r[  s      r+   r<  r=  H  rV  r/   c                     gr6  r8  rf  s         r+   r<  r=  I  r  r/   c                     gr6  r8  r:  rx  r#  r  s       r+   r<  r=  J  r  r/   c                     gr6  r8  rk  s       r+   r<  r=  K  r  r/   c                     gr6  r8  )r:  rx  r#  r  r  include_selfs         r+   r<  r=  L  ra  r/   c                     gr6  r8  )sorted_sequencer:  r  r  r;  s        r+   r<  r=  M  r  r/   c                     gr6  r8  )r  r  lengthsrl  r  r  unsafes          r+   r<  r=  N  r  r/   c                     gr6  r8  )r:  rx  r#  s      r+   r<  r=  O  r@  r/   c                     gr6  r8  )r:  r  rx  r#  s       r+   r<  r=  P  r  r/   c                     gr6  r8  r:  r  rx  r*  r  steps         r+   r<  r=  Q  r  r/   c                     gr6  r8  rw  s         r+   r<  r=  R  r  r/   c                     gr6  r8  r  s     r+   r<  r=  S  r  r/   c                     gr6  r8  r9  s     r+   r<  r=  T  rR  r/   c                     gr6  r8  r9  s     r+   r<  r=  U  rI  r/   c                     gr6  r8  r9  s     r+   r<  r=  V  rR  r/   c                     gr6  r8  r9  s     r+   r<  r=  W  r>  r/   c                     gr6  r8  r9  s     r+   r<  r=  X  r>  r/   c                     gr6  r8  r9  s     r+   r<  r=  Y  rI  r/   c                     gr6  r8  r9  s     r+   r<  r=  Z  rI  r/   c                     gr6  r8  rK  s    r+   r<  r=  [  rL  r/   c                     gr6  r8  rK  s    r+   r<  r=  \  rI  r/   c                     gr6  r8  r  s     r+   r<  r=  ]  r  r/   c                     gr6  r8  r  s     r+   r<  r=  ^  r|  r/   c                     gr6  r8  r  s      r+   r<  r=  _  r  r/   c                     gr6  r8  )r  r  r  r;  s       r+   r<  r=  `  rD  r/   c                     gr6  r8  )r  r  r  r  r;  s        r+   r<  r=  a  r  r/   )stabler;  c                    gr6  r8  )r:  rx  r  r  r;  s        r+   r<  r=  b  r  r/   c                     gr6  r8  rV   split_size_or_sectionsrx  s      r+   r<  r=  c  rf  r/   c                     gr6  r8  r  s      r+   r<  r=  d  r  r/   c                     gr6  r8  r9  s     r+   r<  r=  e  rI  r/   c                     gr6  r8  r9  s     r+   r<  r=  f  rN  r/   c                     gr6  r8  rp  s      r+   r<  r=  g  r  r/   c                     gr6  r8  rf  s         r+   r<  r=  h  r1  r/   c                     gr6  r8  r  s      r+   r<  r=  i  r  r/   c                     gr6  r8  rw  s     r+   r<  r=  j  r>  r/   c                     gr6  r8  rw  s     r+   r<  r=  k  r@  r/   c                     gr6  r8  )r:  r  r  r  r  r  pad_moder  r  r  align_to_windows              r+   r<  r=  m  s	      ~@r/   c                     gr6  r8  rT  s      r+   r<  r=  o  rV  r/   c                     gr6  r8  rT  s      r+   r<  r=  p  r  r/   c                     gr6  r8  rw  s     r+   r<  r=  q  r>  r/   c                     gr6  r8  rK  s    r+   r<  r=  r  r  r/   c                     gr6  r8  rK  s    r+   r<  r=  s  rL  r/   c                     gr6  r8  r  r  s     r+   r<  r=  t  r  r/   c                     gr6  r8  r  s     r+   r<  r=  u  r  r/   c                     gr6  r8  rK  s    r+   r<  r=  v  rL  r/   c                     gr6  r8  )r  r  cs      r+   r<  r=  w  r  r/   c                     gr6  r8  )r)   s    r+   r<  r=  x  r  r/   c                     gr6  r8  rK  s    r+   r<  r=  y  r  r/   c                     gr6  r8  rK  s    r+   r<  r=  z  r@  r/   c                     gr6  r8  rK  s    r+   r<  r=  {  r  r/   c                     gr6  r8  rK  s    r+   r<  r=  |  r@  r/   c                     gr6  r8  rK  s    r+   r<  r=  }  r  r/   c                     gr6  r8  rK  s    r+   r<  r=  ~  r@  r/   c                     gr6  r8  rK  s    r+   r<  r=    r  r/   c                     gr6  r8  rK  s    r+   r<  r=    r  r/   c                     gr6  r8  rK  s    r+   r<  r=    r  r/   c                     gr6  r8  rK  s    r+   r<  r=    r  r/   c                     gr6  r8  rw  s     r+   r<  r=    rN  r/   c                     gr6  r8  )r:  r#  
compute_uvr;  s       r+   r<  r=    r7  r/   c                     gr6  r8  )r:  r  r  Ms       r+   r<  r=    rG  r/   c                     gr6  r8  )r:  full_matricesr;  s      r+   r<  r=    r  r/   c                     gr6  r8  r9  s     r+   r<  r=    r  r/   c                     gr6  r8  r:  dim0r  s      r+   r<  r=    rV  r/   c                     gr6  r8  )r:  axis0axis1s      r+   r<  r=    r  r/   c                     gr6  r8  rK  s    r+   r<  r=    rP  r/   c                     gr6  r8  rK  s    r+   r<  r=    rR  r/   c                     gr6  r8  rK  s    r+   r<  r=    rR  r/   c                     gr6  r8  rK  s    r+   r<  r=    rR  r/   c                     gr6  r8  rK  s    r+   r<  r=    rR  r/   c                     gr6  r8  r  s      r+   r<  r=    rp  r/   c                     gr6  r8  r  s      r+   r<  r=    rp  r/   c                     gr6  r8  r  s      r+   r<  r=    rp  r/   c                     gr6  r8  r  s      r+   r<  r=    rp  r/   c                     gr6  r8  rK  s    r+   r<  r=    rP  r/   c                     gr6  r8  rK  s    r+   r<  r=    r;  r/   c                     gr6  r8  rK  s    r+   r<  r=    r  r/   c                     gr6  r8  rK  s    r+   r<  r=    r;  r/   c                     gr6  r8  rK  s    r+   r<  r=    r>  r/   c                     gr6  r8  rK  s    r+   r<  r=    rI  r/   c                     gr6  r8  rK  s    r+   r<  r=    r;  r/   c                     gr6  r8  rK  s    r+   r<  r=    r>  r/   c                     gr6  r8  rK  s    r+   r<  r=    r>  r/   c                     gr6  r8  rT  s      r+   r<  r=    rG  r/   c                     gr6  r8  rT  s      r+   r<  r=    r(  r/   c                     gr6  r8  rK  s    r+   r<  r=    rP  r/   c                     gr6  r8  r  s      r+   r<  r=    r7  r/   c                     gr6  r8  r  s      r+   r<  r=    rl  r/   c                     gr6  r8  rK  s    r+   r<  r=    r|  r/   c                     gr6  r8  rK  s    r+   r<  r=    r  r/   c                     gr6  r8  rK  s    r+   r<  r=    r|  r/   c                     gr6  r8  rK  s    r+   r<  r=    r  r/   c                     gr6  r8  r  s      r+   r<  r=    rl  r/   c                     gr6  r8  r  s      r+   r<  r=    rl  r/   c                     gr6  r8  rK  s    r+   r<  r=    r>  r/   c                     gr6  r8  rK  s    r+   r<  r=    rN  r/   c                     gr6  r8  r  s      r+   r<  r=    r  r/   c                     gr6  r8  rK  s    r+   r<  r=    r>  r/   c                     gr6  r8  r  s       r+   r<  r=    r1  r/   c                     gr6  r8  rK  s    r+   r<  r=    r	  r/   c                     gr6  r8  rK  s    r+   r<  r=    r	  r/   c                     gr6  r8  rK  s    r+   r<  r=    r	  r/   c                     gr6  r8  rK  s    r+   r<  r=    r	  r/   c                     gr6  r8  r(  s     r+   r<  r=    r  r/   c                     gr6  r8  rK  s    r+   r<  r=    r;  r/   c                     gr6  r8  rK  s    r+   r<  r=    r>  r/   c                     gr6  r8  r  s      r+   r<  r=    r  r/   c                     gr6  r8  rK  s    r+   r<  r=    r  r/   c                     gr6  r8  rK  s    r+   r<  r=    r>  r/   c                     gr6  r8  rK  s    r+   r<  r=    rG  r/   c                     gr6  r8  rK  s    r+   r<  r=    rG  r/   c                     gr6  r8  r  s      r+   r<  r=    r  r/   c                     gr6  r8  r  s      r+   r<  r=    r  r/   c                     gr6  r8  r  s      r+   r<  r=    r  r/   c                     gr6  r8  r  s      r+   r<  r=    r  r/   c                     gr6  r8  rK  s    r+   r<  r=    r;  r/   c                     gr6  r8  r  s      r+   r<  r=    rD  r/   c                     gr6  r8  rK  s    r+   r<  r=    r  r/   c                     gr6  r8  rT  s      r+   r<  r=    rD  r/   c                     gr6  r8  rT  s      r+   r<  r=    r  r/   c                     gr6  r8  )r  rU  r;  s      r+   r<  r=    r  r/   c                     gr6  r8  rK  s    r+   r<  r=    s    rr/   c                     gr6  r8  )r:  r#  s     r+   r<  r=    r  r/   c                     gr6  r8  )r:  rl  rx  r;  s       r+   r<  r=    rp  r/   c                     gr6  r8  r9  s     r+   r<  r=    r>  r/   c                     gr6  r8  r9  s     r+   r<  r=    rI  r/   c                     gr6  r8  )r  inds     r+   r<  r=    r  r/   c                     gr6  r8  )r  r  r  s      r+   r<  r=    r  r/   c                     gr6  r8  )r  r  r  r;  s       r+   r<  r=    r	  r/   c                     gr6  r8  )r:  r  rx  s      r+   r<  r=    r  r/   c                     gr6  r8  r  s       r+   r<  r=    rl  r/   c                     gr6  r8  r  s     r+   r<  r=    r|  r/   c                     gr6  r8  )r:  r  rx  r  r;  s        r+   r<  r=    rp  r/   c                     gr6  r8  rK  s    r+   r<  r=    r3  r/   c                     gr6  r8  r  s      r+   r<  r=    r  r/   c                     gr6  r8  rv  s      r+   r<  r=    rR  r/   c                     gr6  r8  rv  s      r+   r<  r=    r  r/   c                     gr6  r8  )r:  r  r  r  unitriangulars        r+   r<  r=    r  r/   c                     gr6  r8  )r:  r  r  r  r  s        r+   r<  r=    r  r/   c                     gr6  r8  r  s      r+   r<  r=    r	  r/   c
                     gr6  r8  r  s
             r+   r<  r=    r^  r/   c                     gr6  r8  r  s      r+   r<  r=    r	  r/   c                     gr6  r8  r  s     r+   r<  r=    r@  r/   c                     gr6  r8  r9  s     r+   r<  r=    rP  r/   c                     gr6  r8  rw  s     r+   r<  r=    r>  r/   c                     gr6  r8  )r:  rx  sizesr  s       r+   r<  r=    r  r/   c                     gr6  r8  )r:  sortedreturn_inversereturn_countsrx  s        r+   r<  r=    r  r/   c                     gr6  r8  )r:  r  r  rx  s       r+   r<  r=    r  r/   c                     gr6  r8  )rl  rX  s     r+   r<  r=    r  r/   c                     gr6  r8  r!  s      r+   r<  r=    r  r/   c                     gr6  r8  r  s      r+   r<  r=    rc  r/   c                     gr6  r8  r  s      r+   r<  r=    r  r/   c                     gr6  r8  rp  s      r+   r<  r=    r  r/   c                     gr6  r8  )rx  r6  s     r+   r<  r=    rR  r/   c                     gr6  r8  rw  s     r+   r<  r=    r>  r/   c                     gr6  r8  rw  s     r+   r<  r=    r@  r/   c                     gr6  r8  r  s     r+   r<  r=    r  r/   c                     gr6  r8  r,  s     r+   r<  r=    r@  r/   c                     gr6  r8  )	conditionrx  rw  s      r+   r<  r=    r  r/   c                     gr6  r8  )r  r  r  r  s       r+   r<  r=    r  r/   c                     gr6  r8  )r:  input_scaleinput_zero_point	prepacked	out_scaleout_zero_pointout_channels          r+   r<  r=    r  r/   c                     gr6  r8  r  s        r+   r<  r=    r  r/   c                     gr6  r8  )r  levels     r+   r<  r=    r  r/   c                     gr6  r8  )primaltangentr,  s      r+   r<  r=    rD  r/   c                     gr6  r8  r  s    r+   r<  r=    rN  r/   c                     gr6  r8  r1  s    r+   r<  r=    r  r/   c                     gr6  r8  r1  s    r+   r<  r=    r  r/   c                     gr6  r8  r1  s    r+   r<  r=    r>  r/   c                     gr6  r8  )r  rt  r  r  s       r+   r<  r=    r]  r/   c                     gr6  r8  r  s     r+   r<  r=    r  r/   c                     gr6  r8  )r  r  r  r  s       r+   r<  r=    r  r/   )implicitc                    gr6  r8  )r  rt  r8  s      r+   r<  r=    r  r/   c                     gr6  r8  )r  rx  r*  r  s       r+   r<  r=    r  r/   c                     gr6  r8  )r  r  s     r+   r<  r=    rR  r/   c                     gr6  r8  r  rt  r  s      r+   r<  r=    rD  r/   c                     gr6  r8  )r  rx  r#  s      r+   r<  r=    r  r/   c                     gr6  r8  r1  s    r+   r<  r=    r|  r/   c                     gr6  r8  )r  rx  r*  r  rx  s        r+   r<  r=    r  r/   c                     gr6  r8  )r  
split_sizerx  s      r+   r<  r=    r  r/   c                     gr6  r8  )r  split_sizesrx  s      r+   r<  r=     r  r/   c                     gr6  r8  r	  s     r+   r<  r=    rN  r/   c                     gr6  r8  r1  s    r+   r<  r=    r3  r/   c                     gr6  r8  )r  r  r  s      r+   r<  r=    r  r/   c                     gr6  r8  r	  s     r+   r<  r=    r@  r/   c                     gr6  r8  r1  s    r+   r<  r=    r;  r/   c                     gr6  r8  r1  s    r+   r<  r=    r  r/   c                     gr6  r8  r1  s    r+   r<  r=    r  r/   c                     gr6  r8  r1  s    r+   r<  r=    r|  r/   c                     gr6  r8  r1  s    r+   r<  r=  	  rN  r/   c                     gr6  r8  r1  s    r+   r<  r=  
  rP  r/   c                     gr6  r8  r1  s    r+   r<  r=    rN  r/   c                     gr6  r8  r1  s    r+   r<  r=    rP  r/   c                     gr6  r8  r	  s     r+   r<  r=    rR  r/   c                     gr6  r8  r  r\   s     r+   r<  r=    rP  r/   c                     gr6  r8  r  	dimensionrt  rx  s       r+   r<  r=    rG  r/   c                     gr6  r8  r1  s    r+   r<  r=    r  r/   c                     gr6  r8  r  rU  s     r+   r<  r=    r  r/   c                     gr6  r8  rY  s     r+   r<  r=    rV  r/   c                     gr6  r8  rY  s     r+   r<  r=    rV  r/   c                     gr6  r8  rY  s     r+   r<  r=    r@  r/   c                     gr6  r8  rY  s     r+   r<  r=    r  r/   c                     gr6  r8  rY  s     r+   r<  r=    r  r/   c                     gr6  r8  rY  s     r+   r<  r=    rR  r/   c                     gr6  r8  rY  s     r+   r<  r=    r@  r/   c                     gr6  r8  rY  s     r+   r<  r=    r@  r/   c                     gr6  r8  rY  s     r+   r<  r=    rR  r/   c                     gr6  r8  rY  s     r+   r<  r=    r@  r/   c                     gr6  r8  rY  s     r+   r<  r=    r@  r/   c                     gr6  r8  rY  s     r+   r<  r=    rI  r/   c                     gr6  r8  rY  s     r+   r<  r=    r>  r/   c                     gr6  r8  rY  s     r+   r<  r=    rI  r/   c                     gr6  r8  r1  s    r+   r<  r=     r  r/   c                     gr6  r8  r1  s    r+   r<  r=  !  r  r/   c                     gr6  r8  rS  s     r+   r<  r=  "  rN  r/   c                     gr6  r8  r1  s    r+   r<  r=  #  r@  r/   c                     gr6  r8  rY  s     r+   r<  r=  $  r  r/   c                     gr6  r8  r1  s    r+   r<  r=  %  rL  r/   c                     gr6  r8  r1  s    r+   r<  r=  &  r|  r/   c                     gr6  r8  rY  s     r+   r<  r=  '  rI  r/   c                     gr6  r8  rY  s     r+   r<  r=  (  rP  r/   c                     gr6  r8  rY  s     r+   r<  r=  )  rP  r/   c                     gr6  r8  )r  arrays     r+   r<  r=  *  r  r/   c                     gr6  r8  )r  idxs     r+   r<  r=  +  rN  r/   c                     gr6  r8  )r  memos     r+   r<  r=  ,  r@  r/   c                     gr6  r8  r1  s    r+   r<  r=  -  rL  r/   c                     gr6  r8  r1  s    r+   r<  r=  .  r@  r/   c                     gr6  r8  r1  s    r+   r<  r=  /  r  r/   c                     gr6  r8  r1  s    r+   r<  r=  0  rL  r/   c                     gr6  r8  )r  format_specs     r+   r<  r=  1  r  r/   c                     gr6  r8  )r  protos     r+   r<  r=  2  rV  r/   c                     gr6  r8  r1  s    r+   r<  r=  3  r;  r/   )tensor_contentsc                    gr6  r8  )r  r  s     r+   r<  r=  4  rG  r/   c                     gr6  r8  )r  r  r  s      r+   r<  r=  5  rR  r/   c                     gr6  r8  )r  ds     r+   r<  r=  6  rP  r/   c                     gr6  r8  r1  s    r+   r<  r=  7  r  r/   c                     gr6  r8  r1  s    r+   r<  r=  8  r  r/   c                     gr6  r8  r1  s    r+   r<  r=  9  r|  r/   c                     gr6  r8  r1  s    r+   r<  r=  :  r|  r/   c                     gr6  r8  r1  s    r+   r<  r=  ;  r  r/   c                     gr6  r8  r1  s    r+   r<  r=  <  r  r/   c                     gr6  r8  r1  s    r+   r<  r=  =  r>  r/   c                     gr6  r8  r1  s    r+   r<  r=  >  rI  r/   c                     gr6  r8  r1  s    r+   r<  r=  ?  r;  r/   c                     gr6  r8  r1  s    r+   r<  r=  @  r>  r/   c                     gr6  r8  r1  s    r+   r<  r=  A  rN  r/   c                     gr6  r8  r1  s    r+   r<  r=  B  rP  r/   c                     gr6  r8  r1  s    r+   r<  r=  C  rN  r/   c                     gr6  r8  )r  cuda_enabledcpu_enabled
cuda_dtype	cpu_dtypes        r+   r<  r=  D  s    npr/   c                     gr6  r8  )r  r  r  s      r+   r<  r=  E  r  r/   c                     gr6  r8  r1  s    r+   r<  r=  F  r  r/   c                     gr6  r8  r1  s    r+   r<  r=  G  r;  r/   c                     gr6  r8  r1  s    r+   r<  r=  H  rI  r/   c                     gr6  r8  r1  s    r+   r<  r=  I  r>  r/   c                     gr6  r8  r1  s    r+   r<  r=  J  rP  r/   c                     gr6  r8  r1  s    r+   r<  r=  K  rI  r/   c                     gr6  r8  r1  s    r+   r<  r=  L  rI  r/   c                     gr6  r8  r1  s    r+   r<  r=  M  rI  r/   c                     gr6  r8  r1  s    r+   r<  r=  N  rI  r/   c                     gr6  r8  r1  s    r+   r<  r=  O  rP  r/   c                     gr6  r8  r1  s    r+   r<  r=  P  rV  r/   c                     gr6  r8  r1  s    r+   r<  r=  Q  rP  r/   c                     gr6  r8  r1  s    r+   r<  r=  R  rI  r/   c                     gr6  r8  r1  s    r+   r<  r=  S  rP  r/   c                     gr6  r8  r1  s    r+   r<  r=  T  rR  r/   c                     gr6  r8  r1  s    r+   r<  r=  U  rP  r/   c                     gr6  r8  r1  s    r+   r<  r=  V  rR  r/   c                     gr6  r8  r1  s    r+   r<  r=  W  rV  r/   c                     gr6  r8  r1  s    r+   r<  r=  X  rR  r/   c                     gr6  r8  r1  s    r+   r<  r=  Y  r  r/   c                     gr6  r8  r1  s    r+   r<  r=  Z  rR  r/   c                     gr6  r8  r1  s    r+   r<  r=  [  rN  r/   c                     gr6  r8  r1  s    r+   r<  r=  \  rI  r/   c                     gr6  r8  r1  s    r+   r<  r=  ]  r;  r/   c                     gr6  r8  r1  s    r+   r<  r=  ^  r>  r/   c                     gr6  r8  r1  s    r+   r<  r=  _  rI  r/   c                     gr6  r8  r1  s    r+   r<  r=  `  r;  r/   c                     gr6  r8  r1  s    r+   r<  r=  a  rR  r/   c                     gr6  r8  r1  s    r+   r<  r=  b  r  r/   c                     gr6  r8  r1  s    r+   r<  r=  c  r>  r/   c                     gr6  r8  r1  s    r+   r<  r=  d  rN  r/   c                     gr6  r8  r1  s    r+   r<  r=  e  r;  r/   c                     gr6  r8  r1  s    r+   r<  r=  f  r;  r/   c                     gr6  r8  r1  s    r+   r<  r=  g  rD  r/   c                     gr6  r8  )r  r\   non_blockingr*   s       r+   r<  r=  h  r  r/   c                     gr6  r8  r1  s    r+   r<  r=  i  r3  r/   c                     gr6  r8  r1  s    r+   r<  r=  j  r3  r/   c                     gr6  r8  r1  s    r+   r<  r=  k  r@  r/   c                     gr6  r8  r1  s    r+   r<  r=  l  r@  r/   c                     gr6  r8  r1  s    r+   r<  r=  m      "r/   c                     gr6  r8  r1  s    r+   r<  r=  n  r;  r/   c                     gr6  r8  r1  s    r+   r<  r=  o  r  r/   c                     gr6  r8  r1  s    r+   r<  r=  p  r;  r/   c                     gr6  r8  r1  s    r+   r<  r=  q  r  r/   c                     gr6  r8  )r  r  r  s      r+   r<  r=  r  rI  r/   c                     gr6  r8  r1  s    r+   r<  r=  s  rL  r/   c                     gr6  r8  r1  s    r+   r<  r=  t  rL  r/   c                     gr6  r8  rY  s     r+   r<  r=  u  rP  r/   c                     gr6  r8  )r  orderellipsis_idxs      r+   r<  r=  v  rI  r/   c                     gr6  r8  )r  callables     r+   r<  r=  w  rN  r/   c                     gr6  r8  r=  s      r+   r<  r=  x  r  r/   c                     gr6  r8  r=  s      r+   r<  r=  y  r  r/   c                     gr6  r8  )r  gradientretain_graphcreate_graphrF  s        r+   r<  r=  z  s    ikr/   c                     gr6  r8  r  rc   s     r+   r<  r=  {  r  r/   c                     gr6  r8  r  s     r+   r<  r=  |  r7  r/   c                     gr6  r8  r  s     r+   r<  r=  }  r7  r/   c                     gr6  r8  r  s     r+   r<  r=  ~  r7  r/   )r  c                    gr6  r8  )r  mediansigmar  s       r+   r<  r=    r  r/   c                     gr6  r8  r1  s    r+   r<  r=    r@  r/   c                     gr6  r8  )r  	coalesceds     r+   r<  r=    r  r/   c                     gr6  r8  r  s     r+   r<  r=    r]  r/   c                     gr6  r8  )r  r  r  s      r+   r<  r=    r  r/   c                     gr6  r8  r  s     r+   r<  r=    r  r/   c                     gr6  r8  r  s     r+   r<  r=    r7  r/   c                     gr6  r8  r  s     r+   r<  r=    r7  r/   c                     gr6  r8  r  s     r+   r<  r=    r  r/   c                     gr6  r8  r  s     r+   r<  r=    r  r/   c                     gr6  r8  r1  s    r+   r<  r=    r@  r/   c                     gr6  r8  r1  s    r+   r<  r=    r  r/   c                     gr6  r8  )r  r  r  r  r  s        r+   r<  r=    r1  r/   c                     gr6  r8  r1  s    r+   r<  r=    r~  r/   c                     gr6  r8  )r  ambiguity_checks     r+   r<  r=    rD  r/   c                     gr6  r8  r  s     r+   r<  r=    rp  r/   c                     gr6  r8  r  s     r+   r<  r=    rc  r/   c                     gr6  r8  r1  s    r+   r<  r=    r;  r/   c                     gr6  r8  r  s     r+   r<  r=    r;  r/   c                     gr6  r8  rY  s     r+   r<  r=    rN  r/   c                    gr6  r8  )r  rR  r  s      r+   r<  r=    r  r/   c                     gr6  r8  r  rb  s     r+   r<  r=    r;  r/   c                     gr6  r8  r  s     r+   r<  r=    r  r/   c                     gr6  r8  r  s     r+   r<  r=    rl  r/   c                     gr6  r8  r  s     r+   r<  r=    rp  r/   c                    gr6  r8  )r  r  r  s      r+   r<  r=    rD  r/   c                     gr6  r8  r1  s    r+   r<  r=    r|  r/   c                     gr6  r8  r  s     r+   r<  r=    r7  r/   c                     gr6  r8  r  s     r+   r<  r=    rl  r/   c                     gr6  r8  r1  s    r+   r<  r=    r  r/   c                     gr6  r8  r1  s    r+   r<  r=    rL  r/   c                     gr6  r8  r  s     r+   r<  r=    r  r/   c                     gr6  r8  r1  s    r+   r<  r=    r;  r/   c                     gr6  r8  r1  s    r+   r<  r=    r>  r/   c                     gr6  r8  r1  s    r+   r<  r=    r;  r/   c                     gr6  r8  r1  s    r+   r<  r=    r  r/   c                     gr6  r8  )r  rV   s     r+   r<  r=    rR  r/   c                     gr6  r8  r1  s    r+   r<  r=    r  r/   c                     gr6  r8  r1  s    r+   r<  r=    r  r/   c                    gr6  r8  )r  r  r  r  s       r+   r<  r=    r  r/   c                     gr6  r8  r	  s     r+   r<  r=    rN  r/   c                     gr6  r8  r  s     r+   r<  r=    r7  r/   c                     gr6  r8  )r  rV   r  s      r+   r<  r=    r  r/   c                     gr6  r8  )r  rx  rw  r  s       r+   r<  r=    r  r/   c                     gr6  r8  )r  rh  s     r+   r<  r=    r@  r/   c                     gr6  r8  )r  rU  assigns      r+   r<  r=    rD  r/   c                     gr6  r8  )r  rV  r*  r  s       r+   r<  r=    rf  r/   c                     gr6  r8  r1  s    r+   r<  r=    r|  r/   c                     gr6  r8  r1  s    r+   r<  r=    r@  r/   c                     gr6  r8  r1  s    r+   r<  r=    r  r/   c                     gr6  r8  r1  s    r+   r<  r=    r  r/   c                     gr6  r8  r1  s    r+   r<  r=    r  r/   c                     gr6  r8  r1  s    r+   r<  r=    rL  r/   c                     gr6  r8  r1  s    r+   r<  r=    r3  r/   c                     gr6  r8  r	  s     r+   r<  r=    r;  r/   c                     gr6  r8  r1  s    r+   r<  r=    r|  r/   c                     gr6  r8  )r  rl  rV   rm  s       r+   r<  r=    r  r/   c                     gr6  r8  r1  s    r+   r<  r=    rL  r/   c                    gr6  r8  )r  from_tor  s       r+   r<  r=    rc  r/   c                     gr6  r8  r  streams     r+   r<  r=    r  r/   c                     gr6  r8  )r  r  s     r+   r<  r=    r  r/   c                     gr6  r8  r  hooks     r+   r<  r=    r  r/   c                     gr6  r8  r#  s     r+   r<  r=    r  r/   c                     gr6  r8  )r  names     r+   r<  r=    r;  r/   c                     gr6  r8  r  s     r+   r<  r=    r>  r/   c                     gr6  r8  )r  r  s     r+   r<  r=    r(  r/   c                     gr6  r8  rY  s     r+   r<  r=    rR  r/   c                     gr6  r8  r  s     r+   r<  r=    r>  r/   c                     gr6  r8  r  s     r+   r<  r=    r>  r/   c                     gr6  r8  rY  s     r+   r<  r=    rN  r/   c                     gr6  r8  rY  s     r+   r<  r=    r  r/   c                     gr6  r8  r1  s    r+   r<  r=    r  r/   c                     gr6  r8  )r  ri  r  rt  r  s        r+   r<  r=    r  r/   c                     gr6  r8  )r  r  rx  r#  s       r+   r<  r=    r  r/   c                     gr6  r8  r1  s    r+   r<  r=    r>  r/   c                     gr6  r8  r  s     r+   r<  r=    rl  r/   c                     gr6  r8  r1  s    r+   r<  r=    r  r/   c                     gr6  r8  )r  r  rx  r*  r  rx  s         r+   r<  r=    r  r/   c                     gr6  r8  r1  s    r+   r<  r=    r|  r/   c                     gr6  r8  )r  r  s     r+   r<  r=    rR  r/   c                     gr6  r8  )r  r  accumulate_matchess      r+   r<  r=    r  r/   c                     gr6  r8  r  size1size2	dense_dims       r+   r<  r=    r  r/   c                     gr6  r8  r;  s       r+   r<  r=    r]  r/   c                     gr6  r8  )r  rg  rh  r\  r[  r;  s         r+   r<  r=    r1  r/   c                     gr6  r8  r1  s    r+   r<  r=    rL  r/   c                     gr6  r8  r1  s    r+   r<  r=    rP  r/   c                     gr6  r8  r1  s    r+   r<  r=    rI  r/   c                     gr6  r8  r1  s    r+   r<  r=    r;  r/   c                     gr6  r8  r  s     r+   r<  r=    rR  r/   c                     gr6  r8  )r  repss     r+   r<  r=    r  r/   c                     gr6  r8  )r  r\   r  copyrc   s        r+   r<  r=    s    lnr/   )masked_gradc                    gr6  r8  r  r\   rJ  s      r+   r<  r=    r7  r/   c                     gr6  r8  rL  s      r+   r<  r=    r  r/   c                     gr6  r8  r1  s    r+   r<  r=    r  r/   c                     gr6  r8  r1  s    r+   r<  r=    r  r/   c                     gr6  r8  r1  s    r+   r<  r=    r  r/   c                     gr6  r8  rY  s     r+   r<  r=    rI  r/   c                     gr6  r8  rU  s       r+   r<  r=    rI  r/   c                     gr6  r8  )r  r  r  s      r+   r<  r=    r  r/   c                     gr6  r8  r1  s    r+   r<  r=    r  r/   c                     gr6  r8  )r  rX  s     r+   r<  r=    r  r/   c                     gr6  r8  rY  s     r+   r<  r=    rI  r/   c                     gr6  r8  r1  s    r+   r<  r=    r3  r/   c                     gr6  r8  r  s     r+   r<  r=    r  r/   c                     gr6  r8  r1  s    r+   r<  r=    rR  r/   c                     gr6  r8  )r  r  r   drivers       r+   r<  r=    r  r/   c                     gr6  r8  )r  r[   r  r*   s       r+   r<  r=    r  r/   c                     gr6  r8  r1  s    r+   r<  r=    r}  r/   is______i__rbitwise_N)r@  r@  N)r@  N)h㈵>:0yE>F)F)NFN)Nr   FT)NN)NNNr  N)Nr   )FFN)r   N)       @#use_mm_for_euclid_dist_if_necessary)r  F)FN)NNN)r@  NN)   F)Nr@  r   r@  r@  )Nr@  r   r   r@  r@  )r   NNr  )r@  rf  )r7  N)r   r  Fr6  )r@  r7  NNN)r   r   r@  )r   r7  )ri  )LN)NNrg  FF)Nri  Fr  FNN)NNNF)FF)Nr7  N)Nrj  r7  N)r   r7  )TT)NF)NNr@  )NNre  T)      ?)r  NNr  )d   r   r   N)rn  NNNFN)NNF)T)NNNTFNNF)NNr  F)NNNNNNNNNNNNN)TFN)TN)Nr   r@  F)Nr   r@  FF)NFNN)r7  FN)        NNN)NNre  )ri  NFN)rm  FF)Nr   FTN)NNF皙?re  )NNNr  )NNNr  ro  )rm  TF)	NNri  Fr  FNFN)r@  r   r@  )NNFN)Fư>r  )none)r7  )bilinearr   N)r@  Fg|=r7  )g      r  F)NNNNTrp  re  )NNnearestNNF)NNr  N)g{Gz?F)g-C6?g      ?r  )N   N)Nr   N)TNTNFNNNNNNF)r@  r  NNNr  )NNr  )NNrq  Nr  )ri  r@  g-q=N)r   r   )rg  rr  F)TFNrf  Nr  )Nrr  )g      ?gUUUUUU?FF)Nro  )NNr  r  )r  r  N)r@     )r  ri  rr  FNNr  )ro  r  N)r   fan_in
leaky_reluN)froNFNN)NNFNN)ri  NFNN)rz  rl  FNN)ri  r   )TF)NTri  )V瞯<)r{  F)reducedN)NFlinearN)r8  r>  r?  F)r8  )r   r   )r@  r@  F)r8  )r   r   r   )r@  r@  r@  F)r@  r`  )r&  NNNr   F)r   NNr@  )r7  F)	NNNTreflectFTNN)TTN)   ri  N)ri  N)TFF)TFFN)r@  ri  )Nr   NN(  r1   r2   r>  absoluteadaptive_avg_pool1dadaptive_max_pool1dacosr  arccosacosharccoshaddaddbmmaddcdivaddcmuladdmmaddmvaddraffine_grid_generatorallallclosealpha_dropoutamaxaminaminmaxangleanyargmaxargminargsortasin_assert_asyncarcsinasinharcsinhatanarctanatan2arctan2atanharctanh
atleast_1d
atleast_2d
atleast_3d
avg_pool1dbaddbmm
batch_normbatch_norm_backward_elemtbatch_norm_backward_reducebatch_norm_elemtbatch_norm_gather_stats#batch_norm_gather_stats_with_countsbatch_norm_statsbatch_norm_update_stats	bernoullirt   binary_cross_entropy_with_logitsbincountbinomialbitwise_andbitwise_not
bitwise_orbitwise_xorbitwise_left_shiftbitwise_right_shift
block_diagbmmbroadcast_tensorsbroadcast_to	bucketizecartesian_prodcatconcatconcatenatecdistceilceluchain_matmulchannel_shufflecholeskylinalgcholesky_excholesky_inversecholesky_solvechoose_qparams_optimizedchunkclampclip	clamp_min	clamp_maxcolumn_stackcovclonecombinationscomplexcopysignpolarr   conjconj_physicalresolve_conjresolve_negconstant_pad_ndconv1dconv2dconv3dconvolutionconv_tbcconv_transpose1dconv_transpose2dconv_transpose3dcorrcoefcoscosine_embedding_losscoshcosine_similaritycount_nonzerocrossctc_losscummaxcummincumprodcumsumcumulative_trapezoidlogcumsumexpdeg2rad
dequantizedetdetachdiag
diag_embeddiagflatdiffr  diagonal_scatteras_strided_scatterdigammadistdivdividedotrD  dsmmhsmmdsplitdstackr  eigvalseigheigvalsheinsum	embeddingembedding_bag
empty_likeeqequalerferfcerfinvexpexp2expm1 fake_quantize_per_channel_affinefake_quantize_per_tensor_affinefused_moving_avg_obs_fake_quantfbgemm_linear_fp16_weight)fbgemm_linear_fp16_weight_fp32_activationfbgemm_linear_int8_weight)fbgemm_linear_int8_weight_fp32_activationfbgemm_linear_quantize_weightfbgemm_pack_gemm_matrix_fp16fbgemm_pack_quantized_matrixfeature_alpha_dropoutfeature_dropoutr   ifftrfftirffthfftihffthfft2ihfft2hfftnihfftnfftnifftnrfftnirfftnfft2ifft2rfft2irfft2fftshift	ifftshiftfixflattenflipfliplrflipudfrobenius_normfloorfloor_dividefloat_powerfmodfracfrexp	full_likestrided_functional_assert_async	lu_unpackgathergcdge
get_devicegreater_equalgeqrfi0inneroutergerr  grid_samplergrid_sampler_2dgrid_sampler_3d
group_normgrugru_cellgtgreater
hardshrink	heavisidehinge_embedding_losshistc	histogramhistogramddhouseholder_producthspmmhsplithstackhypotigammaigammacr:  	index_add
index_copy	index_putindex_select
index_fillindex_reduceisfiniteisinisinfisrealisposinfisneginfinstance_normint_reprinverseinvinv_ex
is_complexis_conjis_negis_distributedis_inferenceis_floating_point
is_nonzerois_same_size	is_signediscloseisnanistftkl_divkronkthvalueldl_factor_ex
ldl_factor	ldl_solve
layer_normlcmldexple
less_equallerplgammalobpcgloglog_softmaxlog10log1plog2	logaddexp
logaddexp2logdetxlogylogical_andlogical_not
logical_orlogical_xorlogit	logsumexplstm	lstm_cellltlesslulu_solvemargin_ranking_lossmasked_fillmasked_scattermasked_selectmatmul	lu_factorlu_factor_exmatrix_powermatrix_rank	multi_dot
matrix_expr&  maximumfmax
max_pool1d
max_pool2d
max_pool3dmax_pool1d_with_indicesr  nanmeanr  	nanmedianmeshgridr%  minimumfminmiopen_batch_normmiopen_convolutionmiopen_convolution_add_relumiopen_convolution_relumiopen_convolution_transposemiopen_depthwise_convolution
miopen_rnnmmr  movedimmoveaxismsortmulmultiplymultinomialmvmvlgammanarrow
nan_to_numnative_batch_norm_native_batch_norm_legitnative_dropoutnative_layer_normnative_group_normnative_normnative_channel_shufflene	not_equalnegr  	nextafterr   r   adaptive_avg_pool2dadaptive_avg_pool3d adaptive_max_pool1d_with_indicesadaptive_max_pool2d adaptive_max_pool2d_with_indicesadaptive_max_pool3d adaptive_max_pool3d_with_indicesaffine_grid
avg_pool2d
avg_pool3dbinary_cross_entropycross_entropy	dropout1d	dropout2d	dropout3delufoldfractional_max_pool2d"fractional_max_pool2d_with_indicesfractional_max_pool3d"fractional_max_pool3d_with_indicesgaussian_nll_lossgeluglugrid_samplegumbel_softmaxhardtanhinterpolatel1_lossry  r}  local_response_norm
logsigmoid	lp_pool1d	lp_pool2d	lp_pool3dmax_pool2d_with_indicesmax_pool3d_with_indicesmax_unpool1dmax_unpool2dmax_unpool3dmse_lossmulti_head_attention_forwardmulti_margin_lossmultilabel_margin_lossmultilabel_soft_margin_lossnll_loss	normalizeone_hotrH  pairwise_distancepoisson_nll_lossprelurelurelu6rms_normrreluselusilumishscaled_dot_product_attentionsmooth_l1_loss
huber_losssoft_margin_losssoftmaxsoftminsoftplus
softshrinksoftsign
tanhshrinkr  triplet_margin_loss!triplet_margin_with_distance_lossunfoldr   uniform_normal_	constant_kaiming_uniform_nonzerononzero_staticargwherer  vector_normmatrix_normnorm_except_dimnuclear_normr  orgqrormqrpermutepca_lowrankpdistpinversepinvpixel_shufflepixel_unshufflepoisson	polygammar  	ones_liker   prodputq_per_channel_axisq_per_channel_scalesq_per_channel_zero_pointsq_scaleq_zero_pointqrquantilenanquantilequantize_per_channelquantize_per_tensorquantize_per_tensor_dynamicquantized_batch_normquantized_gru_cellquantized_lstm_cellquantized_max_pool1dquantized_max_pool2dquantized_max_pool3dquantized_rnn_relu_cellquantized_rnn_tanh_cellrad2deg	rand_likerandint_like
randn_likeravelr9  vdotvecdotview_as_realview_as_complex
reciprocal	remainderrenormrepeat_interleavereshapernn_relurnn_relu_cellrnn_tanhrnn_tanh_cellrollrot90round	row_stack_rowwise_prunersqrtrsubsaddmmscatterscatter_addscatter_reducesearchsorted_segment_reduceselectselect_scatterslice_inverseslice_scatterr   signsignbitsgnsinsincsinhslogdetsmmspmmr  solve_exsortsplitsplit_with_sizessqrtsquaresqueezesspaddmmstackr  std_meanstftsubsubtractsum	sym_floatsym_intsym_maxsym_minsym_notsym_itesym_sum	_sym_sqrt_sym_cos	_sym_cosh_sym_sin	_sym_sinh_sym_tan	_sym_tanh	_sym_asin	_sym_acos	_sym_atannansumsvdsvd_lowranksvdvalsswapaxesswapdimsspecialairy_ai	bessel_j0	bessel_j1	bessel_y0	bessel_y1chebyshev_polynomial_tchebyshev_polynomial_uchebyshev_polynomial_vchebyshev_polynomial_wentrerfcxexpitgammainc	gammainccgammalnhermite_polynomial_hhermite_polynomial_hei0ei1i1elaguerre_polynomial_llegendre_polynomial_plog_ndtrmodified_bessel_i0modified_bessel_i1modified_bessel_k0modified_bessel_k1multigammalnndtrndtripsiscaled_modified_bessel_k0scaled_modified_bessel_k1shifted_chebyshev_polynomial_tshifted_chebyshev_polynomial_ushifted_chebyshev_polynomial_vshifted_chebyshev_polynomial_wspherical_bessel_j0xlog1pyzetattaketake_along_dimtanr   	tensorinvtensorsolve	tensordottensor_splittiletopktracer  trapz	trapezoidtriangular_solvesolve_triangulartriltriutrue_dividetruncunbindr  uniqueunique_consecutiveunravel_indexunsafe_chunkunsafe_splitunsafe_split_with_sizes	unsqueezer   rs  var_meanvsplitvstackwhere_wrapped_linear_prepack#_wrapped_quantized_linear_prepacked
zeros_like_fw_primal_copy_make_dual_copyview_as_real_copyview_as_complex_copy
_conj_copy_neg_view_copyas_strided_copy_sparse_broadcast_to_copydiagonal_copyexpand_copynarrow_copypermute_copy_reshape_alias_copyselect_copydetach_copy
slice_copy
split_copysplit_with_sizes_copysqueeze_copyt_copytranspose_copyunsqueeze_copy_indices_copy_values_copyindices_copyvalues_copycrow_indices_copycol_indices_copyccol_indices_copyrow_indices_copyunbind_copy	view_copyunfold_copy
alias_copy__floordiv____rfloordiv____ifloordiv____truediv____rtruediv____itruediv__
__lshift____rlshift____ilshift__
__rshift____rrshift____irshift____and____or____xor__	__float____complex__	__array____bool____contains____neg__
__invert____mod____rmod____imod____array_wrap____getitem____deepcopy____int____long__	__index____len__
__format____reduce_ex____reversed____repr____setitem____setstate__Tr#  HmTmH_backward_hooks_post_accumulate_grad_hooksr0  _cdatar1  r2  _grad_fngrad_fn_version_autocast_to_reduced_precision_autocast_to_full_precision#_clear_non_serializable_cached_datar  r[   r\   is_cudais_cpuis_xlais_xpuis_ipuis_leafretains_gradis_metais_mpsis_mtia	is_nestedis_maia	is_mkldnnis_quantized	is_sparseis_sparse_csr	is_vulkanitemsizerj   r'  r  nbytesndim	output_nrr  rX  volatile__cuda_array_interface__type_dimI_dimV_indices_is_view_nnzcrow_indicescol_indicesccol_indicesrow_indices_update_names_valuesalign_asalign_toapply_rm   as_strided_backwardbfloat16preserve_formatboolbytecharcauchy_coalesce_coalesced_
contiguouscontiguous_formatcopy_cpucudamtiaxpuipudata_ptrr>  rx  	dim_orderdoublecdoubleelement_sizeexpand	expand_asexponential_fill_fill_diagonal_floatcfloat
geometric_halfchalf	has_namesrl  intis_coalescedis_contiguous	is_pinned	is_set_to	is_shareditemlog_normal_longmap_map2_module_load
ndimensionnelement_nested_tensor_size_nested_tensor_storage_offsets_nested_tensor_stridesnumpy
pin_memoryput_rd   random_record_streamrefine_namesregister_hook"register_post_accumulate_grad_hookrenamerepeatrequires_grad_
reshape_asresizeresize_	resize_asresize_as_sparse_retain_gradset_share_memory_shortrt  
sparse_dimsparse_mask_sparse_mask_projectionsparse_resize_sparse_resize_and_clear_storageuntyped_storager  storage_typesum_to_sizer  to_dense	_to_dense	to_sparsetolist	to_mkldnntype_asrT  viewview_aszero_
__dlpack____dlpack_device__r  utilsbackend_registration_privateuse1_backend_namehasattrgetattrr   items__name__
startswithlenextendr  update)r2   retprivateuse1_backend_nameret2ignoredr  r  r  subnamer'  r   s              r+   r   r     sW   6 \\Fz%		-z%2z% 	!!#@z% 	!!#A	z%
 	

.z% 	'z% 	0z% 	/z% 	1z% 			4z% 	Qz% 	Lz% 	Lz% 	Lz% 	Jz%  	

K!z%" 	##%J#z%$ 			-%z%& 	X'z%( 	F)z%* 	

.+z%, 	

.-z%. 	J/z%0 	/1z%2 			F3z%4 	&5z%6 	&7z%8 	19z%: 	

.;z%< 	2=z%> 	0?z%@ 	/Az%B 	1Cz%D 	

.Ez%F 	0Gz%H 	6Iz%J 	8Kz%L 	/Mz%N 	1Oz%P 	-Qz%R 	-Sz%T 	-Uz%V 	xWz%X 	RYz%Z 	{[z%\ 	''){]z%^ 	((*u_z%` 	 Qaz%b 	%%'vcz%d 	11  4Cez%f 	 5gz%h 	%%'\iz%j 	Ckz%l 	?mz%n 	..tqz%t 	Cuz%v 	>wz%x 	<yz%z 	5{z%| 	;}z%~ 	<z%@ 	  "CAz%B 	!!#DCz%D 	-Ez%F 			3Gz%H 	!4Iz%J 	1Kz%L 	]Mz%N 	1Oz%P 			6Qz%R 	9Sz%T 	>Uz%V 	aWz%X 	

.Yz%Z 	

>[z%\ 	$:]z%^ 	7_z%` 	?az%b 	9cz%d 	  "Pez%f 	 Ggz%h 	Niz%j 	&&(Ykz%l 	4mz%n 	Coz%p 	

Bqz%r 	8sz%t 	8uz%v 	8wz%x 			Oyz%z 	%{z%| 	I}z%~ 	,z%@ 	9Az%B 	(Cz%D 	5Ez%F 	

.Gz%H 	7Iz%J 	6Kz%L 	5Mz%N 	=Oz%P 	dQz%R 	dSz%T 	dUz%V 	wWz%X 	=Yz%Z 	  !A[z%\ 	  !A]z%^ 	  !A_z%` 	(az%b 			-cz%d 	##  &Cez%f 	

.gz%h 	!Ciz%j 	-kz%l 	@mz%n 	Eoz%p 	xsz%v 	5wz%x 	5yz%z 	B{z%| 	A}z%~ 	""$@z%@ 	;Az%B 	1Cz%D 	*Ez%F 			#Gz%H 	*Iz%J 	&Kz%L 	

:Mz%N 	@Oz%P 	2Qz%R 	

VSz%T 	BUz%V 	KWz%X 	 OYz%Z 	  "Y[z%\ 	1]z%^ 	

0_z%` 			Haz%b 	Kcz%d 			4ez%f 	@gz%h 	

*iz%j 	

)kz%l 	;mz%n 	2oz%p 	4qz%r 	8sz%t 	?uz%v 	Cwz%x 	4yz%z 	|}z%@ 	 jCz%F 	eGz%H 	3Iz%J 	,Kz%L 			-Mz%N 	

.Oz%P 	0Qz%R 			-Sz%T 	

.Uz%V 	/Wz%X 	..0oYz%Z 	--/h[z%\ 	-- C_z%b 	'')Ncz%d 	779^ez%f 	'')}gz%h 	77`kz%n 	++-=oz%p 	**,<qz%r 	**,Bsz%t 	##%?uz%v 	9wz%x 			Cyz%z 			C{z%| 			D}z%~ 			Cz%@ 			DAz%B 			JCz%D 			KEz%F 			DGz%H 			EIz%J 			EKz%L 			FMz%N 			FOz%P 			GQz%R 			ISz%T 			JUz%V 			JWz%X 			KYz%Z 			6[z%\ 			7]z%^ 			B_z%` 			-az%b 	@cz%d 	

*ez%f 	&gz%h 	&iz%j 	Qkz%l 	/mz%n 	3oz%p 	?qz%r 	

5sz%t 	

.uz%v 	/wz%x 	t4PUP]P]fjz  Dyz%z 	&&(H{z%| 	\}z%~ 	Oz%@ 			4Az%B 	3Cz%D 	*Ez%F 	>Gz%H 	/Iz%J 	,Kz%L 	6Mz%N 	5Oz%P 			3Qz%R 	NSz%T 	cUz%V 	fWz%X 	fYz%Z 	m[z%\ 			s]z%^ 	N_z%` 	3az%b 	8cz%d 	5ez%f 	;gz%h 	""$ziz%j 	Gkz%l 	mmz%n 	Yoz%p 	((*?qz%r 	4sz%t 	;uz%v 	2wz%x 	6yz%z 	7{z%| 	8}z%~ 	

.z%@ 	=Az%B 	>Cz%D 	LEz%F 	BGz%H 	=Iz%J 	\Kz%L 	)Mz%N 	

GOz%P 	&Qz%R 	'Sz%T 	2Uz%V 	2Wz%X 	t[z%^ 	(_z%` 	1az%b 	4cz%d 	Kez%f 	*gz%h 	'iz%j 	&kz%l 	.mz%n 	,oz%p 	!1qz%r 	*sz%t 	3uz%v 	)wz%x 	Wyz%z 	%{z%| 	 dz%B	 	rC	z%D	 	

+E	z%F	 	NG	z%H	 	""$cI	z%J	 	!LK	z%L	 	 SM	z%N	 	sO	z%P	 			4Q	z%R	 	6S	z%T	 	3U	z%V	 	;W	z%X	 	

;Y	z%Z	 	0[	z%\	 	  K]	z%^	 			-_	z%`	 	<a	z%b	 	/c	z%d	 	/e	z%f	 	

.g	z%h	 	:i	z%j	 	;k	z%l	 	&m	z%n	 	.o	z%p	 	<q	z%r	 	5s	z%t	 	;u	z%v	 	<w	z%x	 	/y	z%z	 	I{	z%|	 	

s}	z%~	 	O	z%@
 	3A
z%B
 	

5C
z%D
 	EE
z%F
 	BG
z%H
 	!!  $AI
z%J
 	8K
z%L
 	<M
z%N
 	=O
z%P
 	7Q
z%R
 	?S
z%T
 	 FU
z%V
 	!!#]W
z%X
 	[Y
z%Z
 	>[
z%\
 	/]
z%^
 	!!#@_
z%`
 	  "Ma
z%b
 	 <c
z%d
 	*e
z%f
 	!1g
z%h
 			-i
z%j
 	8k
z%l
 	

5m
z%n
 	lo
z%p
 	lq
z%r
 	ls
z%t
 	%%tw
z%z
 	

.{
z%|
 	V}
z%~
 	0
z%@ 	3Az%B 	5Cz%D 			-Ez%F 	8Gz%H 	

5Iz%J 	tMz%P 	  "}Qz%R 	))+vSz%T 	%%'hUz%V 	**wYz%\ 	**g_z%b 	 dez%h 	2iz%j 	

Ekz%l 	<mz%n 	=oz%p 	Aqz%r 			4sz%t 	9uz%v 	Uwz%x 	1yz%z 	+{z%| 	:}z%~ 	Wz%@ 	!sAz%B 	&&(_Cz%D 	8Ez%F 	!fGz%H 	!VIz%J 	UKz%L 	$$&>Mz%N 	3Oz%P 	:Qz%R 			-Sz%T 	2Uz%V 	:Wz%X 	//1NYz%Z 	//1N[z%\ 	//1d]z%^ 	<<>q_z%` 	//1daz%b 	<<>qcz%d 	//1dez%f 	<<>qgz%h 	'')Siz%j 	))+akz%l 	&& Boz%r 	&& Buz%x 	&&x{z%~ 	$$&Rz%@ 	00cCz%F 	<<tIz%L 	  "LMz%N 	11iQz%T 	)) LWz%Z 	$$x]z%` 	##%Zaz%b 	%%'\cz%d 	%%'\ez%f 	%%'\gz%h 	!Kiz%j 	%%|mz%p 	)) Jsz%v 	113iwz%x 	  "myz%z 	11z}z%@ 	>>zCz%F 	11zIz%L 	>>zOz%R 	--/uSz%T 	  "FUz%V 	!9Wz%X 	'')zYz%Z 	&&(g[z%\ 	**,c]z%^ 	&&(C_z%` 	$$&`az%b 	00bez%h 	)) Ikz%n 	'' Mqz%t 	""  %Auz%v 	##%|wz%x 	&&(myz%z 	&&(\{z%| 	""$G}z%~ 	//1gz%@ 	'')^Az%B 	&&(8Cz%D 	%%'mEz%F 	%%'mGz%H 	%%'mIz%J 	//iMz%P 	&&tSz%V 	33tYz%\ 	&&t_z%b 	33tez%h 	&&tkz%n 	33tqz%t 	((*zuz%v 	((*zwz%x 	((*zyz%z 	$$&}{z%| 	88 _z%B 	--tEz%H 	22VKz%N 	77cQz%T 	$$vWz%Z 	%%'X[z%\ 	##%F]z%^ 	!P_z%` 	--/aaz%b 	,,}ez%h 	!!#;iz%j 	  "Akz%l 	!!#Bmz%n 	$$&_oz%p 	!!#yqz%r 	  "Asz%t 	  "Auz%v 	  "Awz%x 	88:uyz%z 	**  -A{z%| 	&&(j}z%~ 	,,.xz%@ 	##%ZAz%B 	##%ZCz%D 	$$&LEz%F 	&&(CGz%H 	$$&6Iz%J 	&&(8Kz%L 	%%'XMz%N 	// LQz%T 	==DHQT[`lrvWz%Z 	""$b[z%\ 	 O]z%^ 	S_z%` 	!7az%b 	&&(xcz%d 	7ez%f 	Fgz%h 	(iz%j 	

\kz%l 	dmz%n 	  "hoz%p 	   +/#3qz%x 	9yz%z 	d{z%| 	%}z%~ 	*z%@ 	QAz%B 	!SCz%D 	+Ez%F 	IGz%H 	*Iz%J 	5Kz%L 	IMz%N 	=Oz%P 	AQz%R 	7Sz%T 	 YUz%V 	6Wz%X 	2Yz%Z 	-[z%\ 	d]z%^ 			7_z%` 	

0az%b 			Dcz%d 	  "2ez%f 	""$4gz%h 	'')9iz%j 	'kz%l 	,mz%n 	7oz%p 	Cqz%r 	fsz%t 	iuz%v 	""$Vwz%x 	!!#Myz%z 	))+P{z%| 	""$s}z%~ 	   aAz%D 	!! aGz%J 	""J#Mz%T 	""L #Wz%` 	""O 	#cz%n 	%% aqz%t 	%% awz%z 	1{z%| 	d}z%~ 	d5==Y]mrvz%@ 	eAz%B 	%Cz%D 	

.Ez%F 	

5Gz%H 	FIz%J 	,Kz%L 	/Mz%N 	4Oz%P 	

3Qz%R 	:Sz%T 	AUz%V 	!;Wz%X 	.Yz%Z 	Q[z%\ 	x]z%^ 	S_z%` 	xaz%b 	Scz%d 	

7ez%f 	7gz%h 	/iz%j 	5kz%l 	Pmz%n 	boz%p 	/qz%r 	

4sz%t 	Muz%v 	8wz%x 	<yz%z 	Z{z%| 	e}z%~ 	|z%@ 	2Az%B 	?Cz%D 	WEz%F 	WGz%H 	

3Iz%J 	1Kz%L 	

.Mz%N 	1Oz%P 			-Qz%R 			-Sz%T 	

.Uz%V 	

.Wz%X 	'Yz%Z 	.[z%\ 			)]z%^ 	

*_z%` 	8az%b 	@cz%d 	Wez%f 	

YeQUYgz%h 	Eiz%j 	 Pkz%l 	

.mz%n 	0oz%p 	;qz%r 	Osz%t 	8uz%v 			-wz%x 	2yz%z 	

 @}z%@ 			4Az%B 	9Cz%D 			-Ez%F 	)Gz%H 	'Iz%J 	Kz%L 	Mz%N 	'Oz%P 	)Qz%R 	Sz%T 	)Uz%V 	(Wz%X 	)Yz%Z 	([z%\ 	)]z%^ 	(_z%` 	)az%b 	)cz%d 	)ez%f 	)gz%h 	0iz%j 			Ikz%l 	Amz%n 	Hoz%p 	8qz%r 	4sz%t 	6uz%v 	/wz%x 	!1yz%z 	!1{z%| 	!1}z%~ 	!1z%@ 	,,.KAz%B 	,,.KCz%D 	,,.KEz%F 	,,.KGz%H 	/Iz%J 	,Kz%L 	+Mz%N 	,Oz%P 	-Qz%R 	.Sz%T 	,Uz%V 	-Wz%X 	-Yz%Z 	 A[z%\ 	!B]z%^ 	/_z%` 	**,Iaz%b 	++-Jcz%d 	*ez%f 	+gz%h 	*iz%j 	+kz%l 	++-Jmz%n 	++-Joz%p 	-qz%r 	 0sz%t 	!!#Duz%v 	-wz%x 	!Oyz%z 	((*:{z%| 	((*:}z%~ 	((*:z%@ 	((*:Az%B 	""$7Cz%D 	,Ez%F 	-Gz%H 	!>Iz%J 	+Kz%L 	-Mz%N 	//1AOz%P 	//1AQz%R 	446SSz%T 	446SUz%V 	446SWz%X 	446SYz%Z 	,[z%\ 	@]z%^ 	))+;_z%` 	@az%b 	>cz%d 	<ez%f 	!gz%h 	

+iz%j 	Kkz%l 			-mz%n 	

.oz%p 	 3qz%r 	  "<sz%t 	:uz%v 	Hwz%x 	Jyz%z 	

*{z%| 	

K}z%~ 	%z%@ 	5Az%B 	1Cz%D 	5Ez%F 	 eGz%H 	%%'aIz%J 	

:Kz%L 	!! LOz%R 	

:Sz%T 	2Uz%V 	/Wz%X 	-Yz%Z 	<[z%\ 	h]z%^ 	  "g_z%` 	6az%b 	;cz%d 	Lez%f 	%%'Wgz%h 	8iz%j 	1kz%l 			-mz%n 	2oz%p 	;qz%r 	2sz%t 	9uz%v 	%%'`wz%x 	11o{z%~ 	ez%@ 	5Az%B 	@Cz%D 	Ez%F 	""OGz%H 	/Iz%J 	oKz%L 	QMz%N 	'')>Oz%P 	FQz%R 	%CSz%T 	>Uz%V 	1Wz%X 	!!#@Yz%Z 	6[z%\ 	?]z%^ 	N_z%` 	<az%b 	##%Hcz%d 	0ez%f 	ogz%h 	9iz%j 	2kz%l 	_mz%n 	Ooz%p 	Oqz%r 	?sz%t 	uz%v 	wz%x 	yz%z 	{z%| 	1}z%~ 	/z%@ 	AAz%B 	/Cz%D 	3Ez%F 	4Gz%H 	4Iz%J 	2Kz%L 	3Mz%N 	3Oz%P 	1Qz%R 	2Sz%T 	2Uz%V 	1Wz%X 	2Yz%Z 	2[z%\ 	.]z%^ 	-_z%` 	.az%b 	/cz%d 	Oez%f 	0gz%h 	iz%j 	3kz%l 	mz%n 	?oz%p 	.qz%r 	/sz%t 	/uz%v 	5wz%x 	0yz%z 	2{z%| 	}z%~ 	z%@ 	/Az%B 	Cz%D 	7Ez%F 	4Gz%H 	_Iz%J 	AKz%L 	1Mz%N 	/Oz%P 	/Qz%R 	/Sz%T 			?Uz%V 			?Wz%X 	&&Yz%Z 	**22O[z%\ 	o]z%^ 	_z%` 	_az%b 	ocz%d 	ez%f 	gz%h 	iz%j 	--/pkz%l 	**,Vmz%n 	22Ooz%p 	_qz%r 	sz%t 	ouz%v 	wz%x 	yz%z 	{z%| 	}z%~ 	z%@ 	Az%B 	##_Cz%D 	Ez%F 	Gz%H 	Iz%J 	  /Kz%L 	Mz%N 	  /Oz%P 	##_Qz%R 	  /Sz%T 	$$oUz%V 	  /Wz%X 	Yz%Z 	[z%\ 	_]z%^ 	o_z%` 	az%b 	_cz%d 	  /ez%f 	$$ogz%h 	oiz%j 	kz%l 	_mz%n 	_oz%p 	''//qz%r 	Nsz%t 	ouz%v 	owz%x 	yz%z 	{z%| 	_}z%~ 	_z%@ 	OAz%B 	_Cz%D 	OEz%F 	=Gz%H 	Iz%J 	Kz%L 	/Mz%N 	=Oz%P 	0Qz%R 	8Sz%T 	9Uz%V 	kWz%X 	E4I4IMYz%Z 	0E0EI[z%\ 	0E0EI]z%^ 	0E0EI_z%` 	MTMaz%b 	cz%d 	6ez%f 	e6M6MQgz%h 	>iz%j 	

u/D/DHkz%l 	0E0EImz%n 	0E0EIoz%p 	

u/D/DHqz%r 	

u/D/DHsz%t 	uz%v 	/wz%x 	!Oyz%z 	

O{z%| 	@}z%~ 	%2G2GKz%@ 	53H3HLAz%B 	_Cz%D 	,Ez%F 	0Gz%H 	HHIz%J 	,Kz%L 	5Mz%N 	1F1FJOz%P 	%2G2GKQz%R 	@Sz%T 	?Uz%V 	0E0EIWz%X 	1F1FJYz%Z 	/[z%\ 	]z%^ 	

u/D/DH_z%` 	_az%b 	ocz%d 	_ez%f 	/gz%h 	1iz%j 	/kz%l 	_mz%n 	MTMoz%p 	0qz%r 	0E0EIsz%t 	6uz%v 	5wz%x 			(yz%z 	@{z%| 	E}z%~ 	?z%@  	A z%B  	""OC z%D  	--E z%F  	%%G z%H  	I z%J  	oK z%L  	,M z%N  	?O z%P  	GQ z%R  	S z%T  	LDLU z%V  	5W z%X  	3Y z%Z  	3[ z%\  	113H] z%^  	,_ z%`  	-a z%b  	Bc z%d  	1e z%f  	-g z%h  	-i z%j  	0k z%l  	  "8m z%n  	Oo z%p  	[q z%r  	?s z%t  	ou z%v  	1F1FJw z%x  	_y z%z  	W{ z%|  	?} z%~  	1 z%@! 	&&(WA!z%B! 	GC!z%D! 	'')QE!z%F! 	OG!z%H! 	I!z%J! 	K!z%L! 	M!z%N! 	_O!z%P! 	1Q!z%R! 	+S!z%T! 			EUZUjUjnU!z%V! 	IIW!z%X! 	GY!z%Z! 	/[!z%\! 	]!z%^! 	/_!z%`! 	.a!z%b! 	=c!z%d! 	7e!z%f! 	+.o7  /Fs!z%Cz! 	((BB  v00F 	GF56 JYGFc":!;<=EEFD#%G		 JJJJ1::$AJJ%AJJ%
 ::  ,, jjZ!23GLL$&$(>RV@VW D6.D~~$/d6IT
 % . JJtJr/   
dispatcherc                    ^  U 4S jnU$ )a=  Wraps a given function with ``__torch_function__`` -related functionality.

Parameters
----------
dispatcher: Callable
    A callable that returns an iterable of Tensor-likes passed into the function.

Note
----
This decorator may reduce the performance of your code. Generally, it's enough to express
your code as a series of functions that, themselves, support __torch_function__. If you
find yourself in the rare situation where this is not the case, e.g. if you're wrapping a
low-level library and you also need it to work for Tensor-likes, then this function is available.

Examples
--------
>>> def dispatcher(a):  # Must have the same signature as func
...     return (a,)
>>> @torch.overrides.wrap_torch_function(dispatcher)
>>> def func(a):  # This will make func dispatchable by __torch_function__
...     return a + 0
c                 N   >^ ^ [         R                  " T 5      UU U4S j5       mT$ )Nc                  d   > T" U 0 UD6n[        U5      (       a  [        TU/U Q70 UD6$ T" U 0 UD6$ rd  )r   r   )r)   r*   relevant_argsr
  r   wrappeds      r+   r
  3wrap_torch_function.<locals>.inner.<locals>.wrapped+  sD    &77M!-00,WmUdUfUU(((r/   )	functoolsr   )r   r
  r
  s   `@r+   rO  "wrap_torch_function.<locals>.inner*  s%    			) 
	) r/   r8  )r
  rO  s   ` r+   r   r     s    0	 Lr/   r
  get_type_fnc                    Uc  [         n[        R                  R                  5       (       d  / $ [	        5       n/ nU  H  nU" U5      nXR;  d  M  [        US5      (       d  M%  UR                  [        R                  R                  :w  d  MO  U(       a]  UR                  U5        [        U5      n[        U5       H  u  px[        XQ" U5      5      (       d  M  Un  O   UR                  Xd5        M  U1nU/nM     U$ )a  Returns a list of arguments on which to call __torch_function__.

Checks arguments in relevant_args for __torch_function__ implementations,
storing references to the arguments and their types in overloaded_args and
overloaded_types in order of calling precedence. Only distinct types are
considered. If a type is a subclass of another type it will have higher
precedence, otherwise the precedence order is the same as the order of
arguments in relevant_args, that is, from left-to-right in the argument list.

The precedence-determining algorithm implemented in this function is
described in `NEP-0018`_.

See torch::append_overloaded_arg for the equivalent function in the C++
implementation.

Parameters
----------
relevant_args : iterable of array-like
    Iterable of array-like arguments to check for __torch_function__
    methods.

get_type_fn : callable, optional
    Function to call on each argument in relevant_args to get its type.

Returns
-------
overloaded_args : list
    Arguments from relevant_args on which to call __torch_function__
    methods, in the order in which they should be called.

.. _NEP-0018:
   https://numpy.org/neps/nep-0018-array-function-protocol.html
r   )rT
  r1   _C_is_torch_function_enabledsetr
  r   _disabled_torch_function_implr  r
  	enumerate
issubclassinsert)	r
  r
  overloaded_typesoverloaded_argsargarg_typer#  iold_args	            r+   _get_overloaded_argsr
  8  s    J  88..00	"%%!#Os# ,"677++uxx/U/UU   $$X. O,"+O"<JA!(K,@AA ! #=  &&u2$,: #&%9 : r/   
public_apic           	         [        U5      n[        [        [        U5      5      n[	        5       (       a0  [        5        nUR                  XX#5      nSSS5        W[        La  U$ U H}  nUR                  n	[        U	S5      (       aG  U	R                  UL a8  U	[        R                  R                  La  [        R                  " S[        5        U	" XX#5      nU[        Ld  M{  Us  $    U R                    SU R"                   3n
SU
 SU Vs/ s H  n[        U5      PM     sn 3n[	        5       (       a  US[%        5        3-  n['        U5      e! , (       d  f       GN= fs  snf )a  Implement a function with checks for ``__torch_function__`` overrides.

See torch::autograd::handle_torch_function for the equivalent of this
function in the C++ implementation.

Arguments
---------
public_api : function
    Function exposed by the public torch API originally called like
    ``public_api(*args, **kwargs)`` on which arguments are now being
    checked.
relevant_args : iterable
    Iterable of arguments to check for __torch_function__ methods.
args : tuple
    Arbitrary positional arguments originally passed into ``public_api``.
kwargs : tuple
    Arbitrary keyword arguments originally passed into ``public_api``.

Returns
-------
object
    Result from calling ``implementation`` or an ``__torch_function__``
    method, as appropriate.

Raises
------
TypeError : if no implementation is found.

Example
-------
>>> def func(a):
...     if has_torch_function_unary(a):
...         return handle_torch_function(func, (a,), a)
...     return a + 0
N__self__zDefining your `__torch_function__ as a plain method is deprecated and will be an error in future, please define it as a classmethod..zno implementation found for 'z.' on types that implement __torch_function__: z nor in mode )r
  tuplemaprT
  r   _pop_mode_temporarilyr   NotImplementedr
  r
  r1   r
  r
  r%   warnDeprecationWarning
__module__r
  _get_current_function_mode	TypeError)r
  r
  r)   r*   r
  typesr  resultoverloaded_argtorch_func_method	func_namer
  r  s                r+   r   r     s[   T +=9O#dO,-E '(( #$,,ZMF %'M * +==%z22!**n<!)O)OOMMQ" #:dC'M) *, (():+>+>*?@I
'	{ 35DE_cS	_EF	H  '((9;<==
C.G %$>  Fs   E
E 

Ea  Check for __torch_function__ implementations in the elements of an iterable
    or if a __torch_function__ mode is enabled.  Considers exact ``Tensor`` s
    and ``Parameter`` s non-dispatchable.  Use this to guard a call to
    :func:`handle_torch_function`; don't use it to test if something
    is Tensor-like, use :func:`is_tensor_like` instead.
    Arguments
    ---------
    relevant_args : iterable
        Iterable or arguments to check for __torch_function__ methods.
    Returns
    -------
    bool
        True if any of the elements of relevant_args have __torch_function__
        implementations, False otherwise.
    See Also
    ________
    torch.is_tensor_like
        Checks if something is a Tensor-like, including an exact ``Tensor``.
    zSpecial case of `has_torch_function` for single inputs.
    Instead of:
      `has_torch_function((t,))`
    call:
      `has_torch_function_unary(t)`
    which skips unnecessary packing and unpacking work.
    a'  Special case of `has_torch_function` that skips tuple creation.

    This uses the METH_FASTCALL protocol introduced in Python 3.7

    Instead of:
      `has_torch_function((a, b))`
    call:
      `has_torch_function_variadic(a, b)`
    which skips unnecessary packing and unpacking work.
    c                     [         R                  " [        5      n 0 nS[        [        R                  4S[        R
                  [        R
                  R                  4S[        R                  R
                  [        [        R                  R
                  5      4S[        R                  R                  [        [        R                  R                  5      4S[        R                  [        [        R                  5      4S[        R                  [        [        R                  5      4S[        R                  [        [        R                  5      4S[        R                  [        [        R                  5      4/nU GHz  u  p4nU GHl  nS	nU[        R                  Lan  UR                  S
5      (       a  M1  UR                  S5      (       a  SnOgUR                  S5      (       a  SnONUS   R                  5       (       d  SnO3US:X  a  M  O*[!        XF5      n[!        ["        US 5      U:X  a  M  US:X  a  M  [!        XF5      nU[        R                  L a  [!        ["        US 5      U:X  a  M  [%        U[&        R(                  5      (       a  GM  [%        U[*        R,                  5      (       a  GM*  [/        U5      (       d  [1        US5      (       a  U SU S3XR2                  '   U SU S3XR4                  '   U(       a  GM}  UR2                  [7        5       ;   a=  Sn	UR2                  [9        5       ;  d    U	R;                  XHR<                  5      5       eGM  X   R?                  UR2                  5        GM  [/        U5      (       d  GM  U SU 3X'   U(       a  GM  U[7        5       ;   a3  Sn	U[9        5       ;  d    U	R;                  XHR<                  5      5       eGMY  X   R?                  U5        GMo     GM}     X4$ )Nr1   ztorch.functionalztorch.nn.functionalztorch.nn.initztorch.Tensorztorch.linalgz	torch.fftztorch.specialFr`  r_  Tr   
unique_dim__weakref__r#  r
  z.__get__z.__set__zk{}.{} is in the tuple returned by torch._overrides.get_ignored_functions but still has an explicit override) collectionsdefaultdictlistr1   __all__r   r   dirr   r2   r  r   r	  r
  endswithislowerr
  object
isinstancer
  
ModuleType
__future___Featurer  r
  r#  __set__r   r   formatr
  r  )
overridable_funcsr#  tested_namespacesnamespace_str	namespacens_funcsr
  r"   r   r  s
             r+   _get_overridable_functionsr    sB    $//5E	%'	U--u/?/?/G/GH	 3 3S9L9L5MN	%((--UXX]]);<	s5<<'89	s5<<'89	eiiUYY0	%--U]]);<	 /@*(!IF,''--))#..!F'',,!F"1--//!F,. / y469d3t;-90DELL(WVY-MQU-U$ 0 011$
 3 344D>>gdI&>&>)6q8&Lll#)6q8&Lll#<<#8#::=   <</D/FF 

!==I F %+224<<@D>>*O1YK8EK ,..9  #8#:: CJJ}}= : (//5E " /@H ##r/   c                      [        5       S   $ )zList functions that are overridable via __torch_function__

Returns
-------
Dict[Any, List[Callable]]
    A dictionary that maps namespaces that contain overridable functions
    to functions in that namespace that can be overridden.
r   )r  r8  r/   r+   r   r   f  s     &'**r/   c                     [        U [        R                  R                  [        R                  R                  45      (       a  [        U 5      $ [        5       S   R                  U 5      $ )zGet a human readable string name for a function passed to
__torch_function__

Arguments
---------
f : Callable
    Function to resolve the name of.

Returns
-------
str
    Name of the function; if eval'ed it should give back the input
    function.
r@  )r  r1   _ops
OpOverloadOpOverloadPacketstrr  get)fs    r+   r   r   s  sL      !ejj++UZZ-H-HIJJ1v%'*..q11r/   c                  R    [        5       n [        U [        R                     5      nU$ )z<Returns a set of the overridable methods on ``torch.Tensor``)r   r
  r1   r2   )r
  methodss     r+   _get_tensor_methodsr    s&     23#ELL12GNr/   c                 H    U [        5       ;   =(       d    U R                  S:H  $ )a7  
Returns True if the function passed in is a handler for a
method or property belonging to ``torch.Tensor``, as passed
into ``__torch_function__``.

.. note::
   For properties, their ``__get__`` method must be passed in.

This may be needed, in particular, for the following reasons:

1. Methods/properties sometimes don't contain a `__module__` slot.
2. They require that the first passed-in argument is an instance
   of ``torch.Tensor``.

Examples
--------
>>> is_tensor_method_or_property(torch.Tensor.add)
True
>>> is_tensor_method_or_property(torch.add)
False
r#  )r  r
  )r   s    r+   r   r     s!    . &((FDMMY,FFr/   c                 ^    [        U 5      [        R                  L =(       d    [        U S5      $ )a  
Returns ``True`` if the passed-in input is a Tensor-like.

Currently, this occurs whenever there's a ``__torch_function__``
attribute on the type of the input.

Examples
--------
A subclass of tensor is generally a Tensor-like.

>>> class SubTensor(torch.Tensor): ...
>>> is_tensor_like(SubTensor([0]))
True

Built-in or user types aren't usually Tensor-like.

>>> is_tensor_like(6)
False
>>> is_tensor_like(None)
False
>>> class NotATensor: ...
>>> is_tensor_like(NotATensor())
False

But, they can be made Tensor-like by implementing __torch_function__.

>>> class TensorLike:
...     @classmethod
...     def __torch_function__(cls, func, types, args, kwargs):
...         return -1
>>> is_tensor_like(TensorLike())
True
r   )rT
  r1   r2   r
  )inps    r+   r   r     s%    D 9$J5I(JJr/   c                   T    \ rS rSr% SrS \S'   SS jrSS jrS rS	 r	\
S
 5       rSrg)TorchFunctionModei  a  
A ``TorchFunctionMode`` allows you to override the meaning of all
``__torch_function__`` overrideable functions within a dynamic scope,
without having to actually create a tensor subclass or manually
monkey-patch functions in the PyTorch API.  Some common situations
where you should use a mode:

    * You want to override the meaning of factory functions, or other
      functions that do not otherwise take a tensor as an argument
      (these cannot be overridden with tensor subclasses).

    * You want to override the behavior of all functions without needing
      to wrap your inputs in tensor subclasses; e.g., if you are just
      interested in logging intermediate computations.

    * You want to control the order of execution of various tensor
      subclasses explicitly, rather than implicitly via the return of
      ``NotImplemented``.

Independent subclasses of :class:`TorchFunctionMode` are compositional:
modes can be pushed onto a stack using ``with MyMode():``.
When you call functions in the PyTorch API inside your
``__torch_function__`` implementation, by default, they will forward on to
the next mode on the mode stack.  If you want recursively call back into
your current ``__torch_function__`` implementation, either explicitly
invoke ``self.__torch_function__(...)``, or use the context manager
``enable_torch_function_mode(self, replace=self.inner)`` to make PyTorch
API self-referential (beware of infinite loops, in this case!)
rO  Nc                     g rd  r8  r1  s    r+   r   TorchFunctionMode.__init__  s    r/   r8  c                     [         erd  )NotImplementedErrorr  r   r
  r)   r*   s        r+   r   $TorchFunctionMode.__torch_function__  s    !!r/   c                     [        U 5        U $ rd  )
_push_moder1  s    r+   	__enter__TorchFunctionMode.__enter__  s    4r/   c                     [        5         g rd  )	_pop_mode)r  exc_typeexc_valexc_tbs       r+   __exit__TorchFunctionMode.__exit__  s    r/   c                 B    [         R                  " S5        U " U0 UD6nU$ )NzP`Mode.push()` is no longer necessary and can be replaced with just `with Mode()`)r%   r
  )clsr)   r*   instances       r+   pushTorchFunctionMode.push  s'    ^	
 ''r/   )r   Nr8  N)r
  r
  __qualname____firstlineno____doc____annotations__r   r   r(  r/  classmethodr4  __static_attributes__r8  r/   r+   r  r    s7    < "  r/   r  c                  B    [        5       n U S:  a  [        U S-
  5      $ S $ )Nr   r@  )r   r
   )	stack_lens    r+   r
  r
    s%    )+I4=M!)a-0KtKr/   c                  j    [        5       n [        U 5       Vs/ s H  n[        U5      PM     sn$ s  snf rd  )r   r   r
   )r>  r
  s     r+    _get_current_function_mode_stackr@    s/    )+I/4Y/?@/?!"1%/?@@@s   0c                     [        U 5        g rd  )r   )r  s    r+   r'  r'    s
    !$'r/   c                      [        5       n U $ rd  )r   olds    r+   r+  r+    s    
#
%CJr/   c               #   `   #    [        5       n  U v   [        U 5        g ! [        U 5        f = f7frd  )r+  r'  rC  s    r+   r
  r
    s$     
+C	3
3s   . .+.c                       \ rS rSrSS jrSrg)BaseTorchFunctionModei#  r8  Nc                     Uc  0 nU" U0 UD6$ rd  r8  r$  s        r+   r   (BaseTorchFunctionMode.__torch_function__$  s    >FT$V$$r/   r6  )r
  r
  r7  r8  r   r<  r8  r/   r+   rG  rG  #  s    %r/   rG  c               #   Z  #    [         R                  R                  5       n  [         R                  R                  [         R                  R                  R
                  5        S v   [         R                  R                  U 5        g ! [         R                  R                  U 5        f = f7frd  )r1   r
  _get_torch_function_state_set_torch_function_state_TorchFunctionStateENABLED)	old_states    r+   _enable_torch_functionrP  *  se     224I6**588+G+G+O+OP**95**95s   B+AB ' B+!B((B+c               #      #    [         R                  R                  5           S v    S S S 5        g ! f = f! , (       d  f       g = f7frd  )r1   r
  _RestorePythonTLSSnapshotr8  r/   r+   r   r   4  s9      
	+	+	-		 
.	- 	 
.	-s%   A61	A36
A A)z.*is deprecated, please use.*r1   rd  )<r9  r  r
  
contextlibr
  r
  r%   collections.abcr   r   typingr   r   r   r1   torch._Cr	   r
   r   r   r   r   r   r   r   r
  r  r.   	lru_cacher
  r   r3  dictr   r   rT
  r
  r
  r   r   r   r   r
  r  r   r   r  rg
  r   r   r  r
  r@  r'  r+  contextmanagerr
  rG  rP  r   r8  r/   r+   <module>rZ     s$  ,       $  * * 
 
 
  1 
     	 F TSs8} S  Sl Tc(m  2 TztHh$67 z  zz##H #P 48KC=K(C5$;/0K 
#YK\UUC=U
 	Up ! . '	  * 	  TS$Ed8n	tHcM22% S$ S$l 	+4T(^(;#< 	+ 	+ 2 2( TS]   Gx GD G G2"KJ5 5pL
A
(
  %- % 6 6  r/   