ó
    \è”h¸  ã                   ó   • SS jr S rg)é   c                 ór   • U R                  5       n U R                  XU-   5      nUR                  5       nX0-
  $ )a5  
Takes as input a polynomial expression and the variable used to construct
it and returns the difference between function's value when the input is
incremented to 1 and the original function value. If you want an increment
other than one supply it as a third argument.

Examples
========

>>> from sympy.abc import x, y, z
>>> from sympy.series.kauers import finite_diff
>>> finite_diff(x**2, x)
2*x + 1
>>> finite_diff(y**3 + 2*y**2 + 3*y + 4, y)
3*y**2 + 7*y + 6
>>> finite_diff(x**2 + 3*x + 8, x, 2)
4*x + 10
>>> finite_diff(z**3 + 8*z, z, 3)
9*z**2 + 27*z + 51
)ÚexpandÚsubs)Ú
expressionÚvariableÚ	incrementÚexpression2s       ÚK/var/www/auris/envauris/lib/python3.13/site-packages/sympy/series/kauers.pyÚfinite_diffr      s<   € ð* ×"Ñ"Ó$€JØ—/‘/ (°yÑ,@ÓA€KØ×$Ñ$Ó&€KØÑ#Ð#ó    c                 óz   • U R                   nU R                   H  nUR                  US   US   S-   5      nM      U$ )ae  
Takes as input a Sum instance and returns the difference between the sum
with the upper index incremented by 1 and the original sum. For example,
if S(n) is a sum, then finite_diff_kauers will return S(n + 1) - S(n).

Examples
========

>>> from sympy.series.kauers import finite_diff_kauers
>>> from sympy import Sum
>>> from sympy.abc import x, y, m, n, k
>>> finite_diff_kauers(Sum(k, (k, 1, n)))
n + 1
>>> finite_diff_kauers(Sum(1/k, (k, 1, n)))
1/(n + 1)
>>> finite_diff_kauers(Sum((x*y**2), (x, 1, n), (y, 1, m)))
(m + 1)**2*(n + 1)
>>> finite_diff_kauers(Sum((x*y), (x, 1, m), (y, 1, n)))
(m + 1)*(n + 1)
é    éÿÿÿÿr   )ÚfunctionÚlimitsr   )Úsumr   Úls      r
   Úfinite_diff_kauersr      s<   € ð* |‰|€HØZŒZˆØ—=‘=  1¡ q¨¡v°¡zÓ2Šñ à€Or   N)r   )r   r   © r   r
   Ú<module>r      s   ðô$ó4r   