
    \h'%                        S SK Jr  S SKJr   " S S\5      r " S S\5      r " S S\5      r " S	 S
\5      r " S S\5      r " S S\5      r	 " S S\5      r
 " S S\5      r " S S\5      r " S S\5      r " S S\5      rg)    )	Predicate)
Dispatcherc                   *    \ rS rSrSrSr\" SSS9rSrg)	NegativePredicate   a  
Negative number predicate.

Explanation
===========

``Q.negative(x)`` is true iff ``x`` is a real number and :math:`x < 0`, that is,
it is in the interval :math:`(-\infty, 0)`.  Note in particular that negative
infinity is not negative.

A few important facts about negative numbers:

- Note that ``Q.nonnegative`` and ``~Q.negative`` are *not* the same
    thing. ``~Q.negative(x)`` simply means that ``x`` is not negative,
    whereas ``Q.nonnegative(x)`` means that ``x`` is real and not
    negative, i.e., ``Q.nonnegative(x)`` is logically equivalent to
    ``Q.zero(x) | Q.positive(x)``.  So for example, ``~Q.negative(I)`` is
    true, whereas ``Q.nonnegative(I)`` is false.

- See the documentation of ``Q.real`` for more information about
    related facts.

Examples
========

>>> from sympy import Q, ask, symbols, I
>>> x = symbols('x')
>>> ask(Q.negative(x), Q.real(x) & ~Q.positive(x) & ~Q.zero(x))
True
>>> ask(Q.negative(-1))
True
>>> ask(Q.nonnegative(I))
False
>>> ask(~Q.negative(I))
True

negativeNegativeHandlerzKHandler for Q.negative. Test that an expression is strictly less than zero.doc N	__name__
__module____qualname____firstlineno____doc__namer   handler__static_attributes__r       Z/var/www/auris/envauris/lib/python3.13/site-packages/sympy/assumptions/predicates/order.pyr   r      s!    $J DGr   r   c                   *    \ rS rSrSrSr\" SSS9rSrg)	NonNegativePredicate3   a  
Nonnegative real number predicate.

Explanation
===========

``ask(Q.nonnegative(x))`` is true iff ``x`` belongs to the set of
positive numbers including zero.

- Note that ``Q.nonnegative`` and ``~Q.negative`` are *not* the same
    thing. ``~Q.negative(x)`` simply means that ``x`` is not negative,
    whereas ``Q.nonnegative(x)`` means that ``x`` is real and not
    negative, i.e., ``Q.nonnegative(x)`` is logically equivalent to
    ``Q.zero(x) | Q.positive(x)``.  So for example, ``~Q.negative(I)`` is
    true, whereas ``Q.nonnegative(I)`` is false.

Examples
========

>>> from sympy import Q, ask, I
>>> ask(Q.nonnegative(1))
True
>>> ask(Q.nonnegative(0))
True
>>> ask(Q.nonnegative(-1))
False
>>> ask(Q.nonnegative(I))
False
>>> ask(Q.nonnegative(-I))
False

nonnegativeNonNegativeHandlerzHandler for Q.nonnegative.r
   r   Nr   r   r   r   r   r   3   s    @ D)Gr   r   c                   *    \ rS rSrSrSr\" SSS9rSrg)	NonZeroPredicate[   a3  
Nonzero real number predicate.

Explanation
===========

``ask(Q.nonzero(x))`` is true iff ``x`` is real and ``x`` is not zero.  Note in
particular that ``Q.nonzero(x)`` is false if ``x`` is not real.  Use
``~Q.zero(x)`` if you want the negation of being zero without any real
assumptions.

A few important facts about nonzero numbers:

- ``Q.nonzero`` is logically equivalent to ``Q.positive | Q.negative``.

- See the documentation of ``Q.real`` for more information about
    related facts.

Examples
========

>>> from sympy import Q, ask, symbols, I, oo
>>> x = symbols('x')
>>> print(ask(Q.nonzero(x), ~Q.zero(x)))
None
>>> ask(Q.nonzero(x), Q.positive(x))
True
>>> ask(Q.nonzero(x), Q.zero(x))
False
>>> ask(Q.nonzero(0))
False
>>> ask(Q.nonzero(I))
False
>>> ask(~Q.zero(I))
True
>>> ask(Q.nonzero(oo))
False

nonzeroNonZeroHandlerzKHandler for key 'nonzero'. Test that an expression is not identically zero.r
   r   Nr   r   r   r   r   r   [   s!    &N DGr   r   c                   *    \ rS rSrSrSr\" SSS9rSrg)	ZeroPredicate   af  
Zero number predicate.

Explanation
===========

``ask(Q.zero(x))`` is true iff the value of ``x`` is zero.

Examples
========

>>> from sympy import ask, Q, oo, symbols
>>> x, y = symbols('x, y')
>>> ask(Q.zero(0))
True
>>> ask(Q.zero(1/oo))
True
>>> print(ask(Q.zero(0*oo)))
None
>>> ask(Q.zero(1))
False
>>> ask(Q.zero(x*y), Q.zero(x) | Q.zero(y))
True

zeroZeroHandlerzHandler for key 'zero'.r
   r   Nr   r   r   r   r#   r#      s    2 D%Gr   r#   c                   *    \ rS rSrSrSr\" SSS9rSrg)	NonPositivePredicate   a  
Nonpositive real number predicate.

Explanation
===========

``ask(Q.nonpositive(x))`` is true iff ``x`` belongs to the set of
negative numbers including zero.

- Note that ``Q.nonpositive`` and ``~Q.positive`` are *not* the same
    thing. ``~Q.positive(x)`` simply means that ``x`` is not positive,
    whereas ``Q.nonpositive(x)`` means that ``x`` is real and not
    positive, i.e., ``Q.nonpositive(x)`` is logically equivalent to
    `Q.negative(x) | Q.zero(x)``.  So for example, ``~Q.positive(I)`` is
    true, whereas ``Q.nonpositive(I)`` is false.

Examples
========

>>> from sympy import Q, ask, I

>>> ask(Q.nonpositive(-1))
True
>>> ask(Q.nonpositive(0))
True
>>> ask(Q.nonpositive(1))
False
>>> ask(Q.nonpositive(I))
False
>>> ask(Q.nonpositive(-I))
False

nonpositiveNonPositiveHandlerzHandler for key 'nonpositive'.r
   r   Nr   r   r   r   r(   r(      s     B D,Gr   r(   c                   *    \ rS rSrSrSr\" SSS9rSrg)	PositivePredicate   a  
Positive real number predicate.

Explanation
===========

``Q.positive(x)`` is true iff ``x`` is real and `x > 0`, that is if ``x``
is in the interval `(0, \infty)`.  In particular, infinity is not
positive.

A few important facts about positive numbers:

- Note that ``Q.nonpositive`` and ``~Q.positive`` are *not* the same
    thing. ``~Q.positive(x)`` simply means that ``x`` is not positive,
    whereas ``Q.nonpositive(x)`` means that ``x`` is real and not
    positive, i.e., ``Q.nonpositive(x)`` is logically equivalent to
    `Q.negative(x) | Q.zero(x)``.  So for example, ``~Q.positive(I)`` is
    true, whereas ``Q.nonpositive(I)`` is false.

- See the documentation of ``Q.real`` for more information about
    related facts.

Examples
========

>>> from sympy import Q, ask, symbols, I
>>> x = symbols('x')
>>> ask(Q.positive(x), Q.real(x) & ~Q.negative(x) & ~Q.zero(x))
True
>>> ask(Q.positive(1))
True
>>> ask(Q.nonpositive(I))
False
>>> ask(~Q.positive(I))
True

positivePositiveHandlerzRHandler for key 'positive'. Test that an expression is strictly greater than zero.r
   r   Nr   r   r   r   r-   r-      s!    $J DGr   r-   c                   ,    \ rS rSrSrSr\" S5      rSrg)ExtendedPositivePredicatei  al  
Positive extended real number predicate.

Explanation
===========

``Q.extended_positive(x)`` is true iff ``x`` is extended real and
`x > 0`, that is if ``x`` is in the interval `(0, \infty]`.

Examples
========

>>> from sympy import ask, I, oo, Q
>>> ask(Q.extended_positive(1))
True
>>> ask(Q.extended_positive(oo))
True
>>> ask(Q.extended_positive(I))
False

extended_positiveExtendedPositiveHandlerr   Nr   r   r   r   r2   r2         * D23Gr   r2   c                   ,    \ rS rSrSrSr\" S5      rSrg)ExtendedNegativePredicatei  ap  
Negative extended real number predicate.

Explanation
===========

``Q.extended_negative(x)`` is true iff ``x`` is extended real and
`x < 0`, that is if ``x`` is in the interval `[-\infty, 0)`.

Examples
========

>>> from sympy import ask, I, oo, Q
>>> ask(Q.extended_negative(-1))
True
>>> ask(Q.extended_negative(-oo))
True
>>> ask(Q.extended_negative(-I))
False

extended_negativeExtendedNegativeHandlerr   Nr   r   r   r   r7   r7     r5   r   r7   c                   ,    \ rS rSrSrSr\" S5      rSrg)ExtendedNonZeroPredicatei7  aD  
Nonzero extended real number predicate.

Explanation
===========

``ask(Q.extended_nonzero(x))`` is true iff ``x`` is extended real and
``x`` is not zero.

Examples
========

>>> from sympy import ask, I, oo, Q
>>> ask(Q.extended_nonzero(-1))
True
>>> ask(Q.extended_nonzero(oo))
True
>>> ask(Q.extended_nonzero(I))
False

extended_nonzeroExtendedNonZeroHandlerr   Nr   r   r   r   r;   r;   7  s    * D12Gr   r;   c                   ,    \ rS rSrSrSr\" S5      rSrg)ExtendedNonPositivePredicateiQ  a  
Nonpositive extended real number predicate.

Explanation
===========

``ask(Q.extended_nonpositive(x))`` is true iff ``x`` is extended real and
``x`` is not positive.

Examples
========

>>> from sympy import ask, I, oo, Q
>>> ask(Q.extended_nonpositive(-1))
True
>>> ask(Q.extended_nonpositive(oo))
False
>>> ask(Q.extended_nonpositive(0))
True
>>> ask(Q.extended_nonpositive(I))
False

extended_nonpositiveExtendedNonPositiveHandlerr   Nr   r   r   r   r?   r?   Q      . "D56Gr   r?   c                   ,    \ rS rSrSrSr\" S5      rSrg)ExtendedNonNegativePredicateim  a  
Nonnegative extended real number predicate.

Explanation
===========

``ask(Q.extended_nonnegative(x))`` is true iff ``x`` is extended real and
``x`` is not negative.

Examples
========

>>> from sympy import ask, I, oo, Q
>>> ask(Q.extended_nonnegative(-1))
False
>>> ask(Q.extended_nonnegative(oo))
True
>>> ask(Q.extended_nonnegative(0))
True
>>> ask(Q.extended_nonnegative(I))
False

extended_nonnegativeExtendedNonNegativeHandlerr   Nr   r   r   r   rD   rD   m  rB   r   rD   N)sympy.assumptionsr   sympy.multipledispatchr   r   r   r   r#   r(   r-   r2   r7   r;   r?   rD   r   r   r   <module>rI      s    ' -+	 +\%9 %P-y -`I B&9 &R+	 +\4	 444	 443y 3479 7879 7r   