
    \h	                     t    S SK Jr  S SKJr   " S S\5      r " S S\5      r " S S\5      r " S	 S
\5      rg)    )	Predicate)
Dispatcherc                   *    \ rS rSrSrSr\" SSS9rSrg)	PrimePredicate   aw  
Prime number predicate.

Explanation
===========

``ask(Q.prime(x))`` is true iff ``x`` is a natural number greater
than 1 that has no positive divisors other than ``1`` and the
number itself.

Examples
========

>>> from sympy import Q, ask
>>> ask(Q.prime(0))
False
>>> ask(Q.prime(1))
False
>>> ask(Q.prime(2))
True
>>> ask(Q.prime(20))
False
>>> ask(Q.prime(-3))
False

primePrimeHandlerzHandler for key 'prime'. Test that an expression represents a prime number. When the expression is an exact number, the result (when True) is subject to the limitations of isprime() which is used to return the result.doc N	__name__
__module____qualname____firstlineno____doc__namer   handler__static_attributes__r       \/var/www/auris/envauris/lib/python3.13/site-packages/sympy/assumptions/predicates/ntheory.pyr   r      s     4 DGr   r   c                   *    \ rS rSrSrSr\" SSS9rSrg)	CompositePredicate*   ao  
Composite number predicate.

Explanation
===========

``ask(Q.composite(x))`` is true iff ``x`` is a positive integer and has
at least one positive divisor other than ``1`` and the number itself.

Examples
========

>>> from sympy import Q, ask
>>> ask(Q.composite(0))
False
>>> ask(Q.composite(1))
False
>>> ask(Q.composite(2))
False
>>> ask(Q.composite(20))
True

	compositeCompositeHandlerzHandler for key 'composite'.r
   r   Nr   r   r   r   r   r   *   s    . D+1OPGr   r   c                   *    \ rS rSrSrSr\" SSS9rSrg)	EvenPredicateF   a  
Even number predicate.

Explanation
===========

``ask(Q.even(x))`` is true iff ``x`` belongs to the set of even
integers.

Examples
========

>>> from sympy import Q, ask, pi
>>> ask(Q.even(0))
True
>>> ask(Q.even(2))
True
>>> ask(Q.even(3))
False
>>> ask(Q.even(pi))
False

evenEvenHandlerzHandler for key 'even'.r
   r   Nr   r   r   r   r   r   F   s    . D,EFGr   r   c                   *    \ rS rSrSrSr\" SSS9rSrg)	OddPredicateb   a  
Odd number predicate.

Explanation
===========

``ask(Q.odd(x))`` is true iff ``x`` belongs to the set of odd numbers.

Examples
========

>>> from sympy import Q, ask, pi
>>> ask(Q.odd(0))
False
>>> ask(Q.odd(2))
False
>>> ask(Q.odd(3))
True
>>> ask(Q.odd(pi))
False

odd
OddHandlerzHHandler for key 'odd'. Test that an expression represents an odd number.r
   r   Nr   r   r   r   r#   r#   b   s     , DGr   r#   N)sympy.assumptionsr   sympy.multipledispatchr   r   r   r   r#   r   r   r   <module>r)      s@    ' -"Y "JQ Q8GI G89 r   