
    /hD                          " S  S5      r g)c                   L    \ rS rSrSrSS jrSS jrSS\S\S\4S	 jjrS
 r	Sr
g)WordNetLemmatizer   a  
WordNet Lemmatizer

Provides 3 lemmatizer modes: _morphy(), morphy() and lemmatize().

lemmatize() is a permissive wrapper around _morphy().
It returns the shortest lemma found in WordNet,
or the input string unchanged if nothing is found.

>>> from nltk.stem import WordNetLemmatizer as wnl
>>> print(wnl().lemmatize('us', 'n'))
u

>>> print(wnl().lemmatize('Anythinggoeszxcv'))
Anythinggoeszxcv

c                 2    SSK Jn  UR                  XU5      $ )z
_morphy() is WordNet's _morphy lemmatizer.
It returns a list of all lemmas found in WordNet.

>>> from nltk.stem import WordNetLemmatizer as wnl
>>> print(wnl()._morphy('us', 'n'))
['us', 'u']
    wordnet)nltk.corpusr   _morphyselfformposcheck_exceptionswns        I/var/www/auris/envauris/lib/python3.13/site-packages/nltk/stem/wordnet.pyr
   WordNetLemmatizer._morphy   s     	.zz$%566    Nc                 2    SSK Jn  UR                  XU5      $ )a  
morphy() is a restrictive wrapper around _morphy().
It returns the first lemma found in WordNet,
or None if no lemma is found.

>>> from nltk.stem import WordNetLemmatizer as wnl
>>> print(wnl().morphy('us', 'n'))
us

>>> print(wnl().morphy('catss'))
None
r   r   )r	   r   morphyr   s        r   r   WordNetLemmatizer.morphy+   s     	.yy$455r   wordr   returnc                 R    U R                  X5      nU(       a  [        U[        S9$ U$ )a	  Lemmatize `word` by picking the shortest of the possible lemmas,
using the wordnet corpus reader's built-in _morphy function.
Returns the input word unchanged if it cannot be found in WordNet.

>>> from nltk.stem import WordNetLemmatizer as wnl
>>> print(wnl().lemmatize('dogs'))
dog
>>> print(wnl().lemmatize('churches'))
church
>>> print(wnl().lemmatize('aardwolves'))
aardwolf
>>> print(wnl().lemmatize('abaci'))
abacus
>>> print(wnl().lemmatize('hardrock'))
hardrock

:param word: The input word to lemmatize.
:type word: str
:param pos: The Part Of Speech tag. Valid options are `"n"` for nouns,
    `"v"` for verbs, `"a"` for adjectives, `"r"` for adverbs and `"s"`
    for satellite adjectives.
:type pos: str
:return: The shortest lemma of `word`, for the given `pos`.
)key)r
   minlen)r   r   r   lemmass       r   	lemmatizeWordNetLemmatizer.lemmatize<   s&    2 d('-s6s#747r   c                     g)Nz<WordNetLemmatizer> )r   s    r   __repr__WordNetLemmatizer.__repr__X   s    $r   r!   )T)NT)n)__name__
__module____qualname____firstlineno____doc__r
   r   strr   r"   __static_attributes__r!   r   r   r   r      s0    $76"8c 8 8c 88%r   r   N)r   r!   r   r   <module>r,      s   N% N%r   