
    /h                     .    S SK r S SKJr   " S S\5      rg)    N)StemmerIc                   .    \ rS rSrSrSS jrS rS rSrg)	RegexpStemmer   a  
A stemmer that uses regular expressions to identify morphological
affixes.  Any substrings that match the regular expressions will
be removed.

    >>> from nltk.stem import RegexpStemmer
    >>> st = RegexpStemmer('ing$|s$|e$|able$', min=4)
    >>> st.stem('cars')
    'car'
    >>> st.stem('mass')
    'mas'
    >>> st.stem('was')
    'was'
    >>> st.stem('bee')
    'bee'
    >>> st.stem('compute')
    'comput'
    >>> st.stem('advisable')
    'advis'

:type regexp: str or regexp
:param regexp: The regular expression that should be used to
    identify morphological affixes.
:type min: int
:param min: The minimum length of string to stem
c                 j    [        US5      (       d  [        R                  " U5      nXl        X l        g )Npattern)hasattrrecompile_regexp_min)selfregexpmins      H/var/www/auris/envauris/lib/python3.13/site-packages/nltk/stem/regexp.py__init__RegexpStemmer.__init__*   s'    vy))ZZ'F	    c                 p    [        U5      U R                  :  a  U$ U R                  R                  SU5      $ )N )lenr   r   sub)r   words     r   stemRegexpStemmer.stem0   s.    t9tyy K<<##B--r   c                 8    SU R                   R                  < S3$ )Nz<RegexpStemmer: >)r   r   )r   s    r   __repr__RegexpStemmer.__repr__6   s    !$,,"6"6!9;;r   )r   r   N)r   )	__name__
__module____qualname____firstlineno____doc__r   r   r   __static_attributes__ r   r   r   r      s    6.<r   r   )r
   nltk.stem.apir   r   r&   r   r   <module>r(      s    
 ")<H )<r   