o
    Zh (                     @   sL   d Z ddlmZ ddlmZ ddlmZ eeZ	G dd deZ
dgZdS )zPyTorch Phi-MoE model.   )PretrainedConfig)rope_config_validation)loggingc                       sb   e Zd ZdZdZdgZ									
																			d fdd	Z  ZS )PhimoeConfiga  
    This is the configuration class to store the configuration of a [`PhimoeModel`]. It is used to instantiate a Phi-moe
    model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
    defaults will yield a similar configuration to that of the
    [microsoft/Phi-3.5-MoE-instruct](https://huggingface.co/microsoft/Phi-3.5-MoE-instruct).
    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.
    Args:
        vocab_size (`int`, *optional*, defaults to 32064):
            Vocabulary size of the Phimoe model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`PhimoeModel`]
        hidden_size (`int`, *optional*, defaults to 4096):
            Dimension of the hidden representations.
        intermediate_size (`int`, *optional*, defaults to 6400):
            Dimension of the MLP representations.
        num_hidden_layers (`int`, *optional*, defaults to 32):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 32):
            Number of attention heads for each attention layer in the Transformer encoder.
        num_key_value_heads (`int`, *optional*, defaults to 8):
            This is the number of key_value heads that should be used to implement Grouped Query Attention. If
            `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
            `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
            converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
            by meanpooling all the original heads within that group. For more details checkout [this
            paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `8`.
        hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
            The non-linear activation function (function or string) in the decoder.
        max_position_embeddings (`int`, *optional*, defaults to `4096*32`):
            The maximum sequence length that this model might ever be used with. Mixtral's sliding window attention
            allows sequence of up to 4096*32 tokens.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        rms_norm_eps (`float`, *optional*, defaults to 1e-05):
            The epsilon used by the rms normalization layers.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models). Only
            relevant if `config.is_decoder=True`.
        pad_token_id (`int`, *optional*):
            The id of the padding token.
        bos_token_id (`int`, *optional*, defaults to 1):
            The id of the "beginning-of-sequence" token.
        eos_token_id (`int`, *optional*, defaults to 2):
            The id of the "end-of-sequence" token.
        tie_word_embeddings (`bool`, *optional*, defaults to `False`):
            Whether the model's input and output word embeddings should be tied.
        rope_theta (`float`, *optional*, defaults to 1000000.0):
            The base period of the RoPE embeddings.
        rope_scaling (`dict`, *optional*):
            The scaling strategy for the RoPE embeddings. If `None`, no scaling is applied. If a dictionary, it must
            contain the following keys: `type`, `short_factor`, `long_factor`, `short_mscale`, `long_mscale` and
            `original_max_position_embeddings`. The `type` must be `longrope`, the `short_mscale` and `long_scale` must
            be numbers, the `short_factor` and `long_factor` must be lists of numbers with the same length as half of
            the attention head size and the `original_max_position_embeddings` must be an integer.
        sliding_window (`int`, *optional*):
            Sliding window attention window size. If not specified, will default to `262144`.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        num_experts_per_tok (`int`, *optional*, defaults to 2):
            The number of experts to root per-token, can be also interpreted as the `top-p` routing
            parameter
        num_local_experts (`int`, *optional*, defaults to 16):
            Number of experts per Sparse MLP layer.
        output_router_logits (`bool`, *optional*, defaults to `False`):
            Whether or not the router logits should be returned by the model. Enabling this will also
            allow the model to output the auxiliary loss. See [here]() for more details
        router_aux_loss_coef (`float`, *optional*, defaults to 0.001):
            The aux loss factor for the total loss.
        router_jitter_noise (`float`, *optional*, defaults to 0.01):
            Amount of noise to add to the router.
        input_jitter_noise (`float`, *optional*, defaults to 0.0): Input jitter noise
        attention_bias (`bool`, *optional*, defaults to `False`): Attention bias
        lm_head_bias (`bool`, *optional*, defaults to `False`): LM head bias

    Example:

    ```python
    >>> from transformers import PhimoeModel, PhimoeConfig
    >>> # Initializing a Phi-3 style configuration
    >>> configuration = PhimoeConfig.from_pretrained("microsoft/Phi-3.5-MoE-instruct")
    >>> # Initializing a model from the configuration
    >>> model = PhimoeModel(configuration)
    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```ZphimoeZpast_key_values@}               silu   {Gz?h㈵>TN      F    .A           MbP?{Gz?c                    sR  || _ || _|| _|| _|| _|| _|| _|| _|| _|d u r!|}|| _	|| _
|	| _|
| _|| _|| _|| _|| _|| _|| _|| _|| _|| _|| _t| jtrd| jvr`| jdd | jd< d| jv rk| jd | _| jdd }| jdd }t|ttfstd| t|ttfstd| t|  t j d	||||d| d S )
NZ	rope_typetype original_max_position_embeddingsZshort_mscaleZlong_mscalez:`rope_scaling`'s short_mscale field must be a number, got z9`rope_scaling`'s long_mscale field must be a number, got )pad_token_idbos_token_ideos_token_idtie_word_embeddings )!
vocab_sizemax_position_embeddingshidden_sizeintermediate_sizenum_hidden_layersnum_attention_headssliding_windowattention_biaslm_head_biasnum_key_value_heads
hidden_actinitializer_rangerms_norm_eps	use_cache
rope_thetaattention_dropoutnum_experts_per_toknum_local_expertsoutput_router_logitsrouter_aux_loss_coefrouter_jitter_noiseinput_jitter_noiserope_scaling
isinstancedictgetr   intfloat
ValueErrorr   super__init__)selfr   r   r    r!   r"   r&   r'   r   r(   r)   r*   r   r   r   r   r+   r3   r#   r,   r-   r.   r/   r0   r1   r2   r$   r%   kwargsZrope_scaling_short_mscaleZrope_scaling_long_mscale	__class__r   ^/var/www/auris/lib/python3.10/site-packages/transformers/models/phimoe/configuration_phimoe.pyr;   t   sb   


zPhimoeConfig.__init__)r   r   r   r	   r	   r
   r   r   r   r   TNr   r   Fr   NNr   r   r   Fr   r   r   FF)__name__
__module____qualname____doc__Z
model_typeZkeys_to_ignore_at_inferencer;   __classcell__r   r   r>   r@   r      s@    Vr   N)rD   Zconfiguration_utilsr   Zmodeling_rope_utilsr   utilsr   Z
get_loggerrA   loggerr   __all__r   r   r   r@   <module>   s   
 
2