o
    Zh	                     @   sH   d Z ddlZddlmZ ddlmZ eeZG dd deZ	dgZ
dS )zMAMBA configuration    N   )PretrainedConfig)loggingc                       sV   e Zd ZdZdZ											
														d fdd	Z  ZS )MambaConfiga  
    This is the configuration class to store the configuration of a [`MambaModel`]. It is used to instantiate a MAMBA
    model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
    defaults will yield a similar configuration to that of the MAMBA
    [state-spaces/mamba-2.8b](https://huggingface.co/state-spaces/mamba-2.8b) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        vocab_size (`int`, *optional*, defaults to 50280):
            Vocabulary size of the MAMBA model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`MambaModel`].
        hidden_size (`int`, *optional*, defaults to 768):
            Dimensionality of the embeddings and hidden states.
        state_size (`int`, *optional*, defaults to 16): shape of the state space latents.
        num_hidden_layers (`int`, *optional*, defaults to 32):
            Number of hidden layers in the model.
        layer_norm_epsilon (`float`, *optional*, defaults to 1e-05):
            The epsilon to use in the layer normalization layers.
        pad_token_id (`int`, *optional*, defaults to 0):
            Padding token id.
        bos_token_id (`int`, *optional*, defaults to 0):
            The id of the beginning of sentence token in the vocabulary.
        eos_token_id (`int`, *optional*, defaults to 0):
            The id of the end of sentence token in the vocabulary.
        expand (`int`, *optional*, defaults to 2): Expanding factor used to determine the intermediate size.
        conv_kernel (`int`, *optional*, defaults to 4): Size of the convolution kernel.
        use_bias (`bool`, *optional*, defaults to `False`):
            Whether or not to use bias in ["in_proj", "out_proj"] of the mixer block
        use_conv_bias (`bool`, *optional*, defaults to `True`):
            Whether or not to use bias in the convolution layer of the mixer block.
        hidden_act (`str`, *optional*, defaults to `"silu"`):
            The non-linear activation function (function or string) in the decoder.
        initializer_range (`float`, *optional*, defaults to 0.1):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        residual_in_fp32 (`bool`, *optional*, defaults to `True`):
            Whether or not residuals should be in `float32`. If set to `False` residuals will keep the same `dtype` as the rest of the model
        time_step_rank (`Union[int,str]`, *optional*, defaults to `"auto"`):
            Rank of the discretization projection matrix. `"auto"` means that it will default to `math.ceil(self.hidden_size / 16)`
        time_step_scale (`float`, *optional*, defaults to 1.0):
            Scale used used to scale `dt_proj.bias`.
        time_step_min (`float`, *optional*, defaults to 0.001):
            Minimum `time_step` used to bound `dt_proj.bias`.
        time_step_max (`float`, *optional*, defaults to 0.1):
            Maximum `time_step` used to bound `dt_proj.bias`.
        time_step_init_scheme (`float`, *optional*, defaults to `"random"`):
            Init scheme used for `dt_proj.weight`. Should be one of `["random","uniform"]`
        time_step_floor (`float`, *optional*, defaults to 0.0001):
            Minimum clamping value of the `dt_proj.bias` layer initialization.
        rescale_prenorm_residual (`bool`, *optional*, defaults to `False`):
            Whether or not to rescale `out_proj` weights when initializing.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the cache should be used.
        use_mambapy (`bool`, *optional*, defaults to `False`):
            Determines the fallback strategy during training if the CUDA-based official implementation of Mamba is not available. If `True`, the mamba.py implementation is used. If `False`, the naive and slower implementation is used. Consider switching to the naive version if memory is limited.


    Example:

    ```python
    >>> from transformers import MambaConfig, MambaModel

    >>> # Initializing a Mamba configuration
    >>> configuration = MambaConfig()

    >>> # Initializing a model (with random weights) from the configuration
    >>> model = MambaModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```Zmambah            h㈵>r         FTsilu皙?auto      ?MbP?random-C6?c                    s   || _ || _|| _|| _|| _|
| _|	| _t|	| j | _|| _	|| _
|| _|| _|| _|| _|| _|dkr>t| jd n|| _|| _|| _|| _|| _|| _|| _|| _|| _|| _t jd|||d| d S )Nr   r   )bos_token_ideos_token_idpad_token_id )
vocab_sizehidden_size
state_sizenum_hidden_layerslayer_norm_epsilonconv_kernelexpandintZintermediate_sizer   r   r   use_biasuse_conv_bias
hidden_actinitializer_rangemathceiltime_step_ranktime_step_scaletime_step_mintime_step_maxtime_step_init_schemetime_step_floorrescale_prenorm_residualresidual_in_fp32	use_cacheuse_mambapysuper__init__)selfr   r   r   r   r   r   r   r   r   r   r    r!   r"   r#   r-   r&   r'   r(   r)   r*   r+   r,   r.   r/   kwargs	__class__r   \/var/www/auris/lib/python3.10/site-packages/transformers/models/mamba/configuration_mamba.pyr1   g   s4   zMambaConfig.__init__)r   r   r   r	   r
   r   r   r   r   r   FTr   r   Tr   r   r   r   r   r   FTF)__name__
__module____qualname____doc__Z
model_typer1   __classcell__r   r   r4   r6   r      s8    Jr   )r:   r$   Zconfiguration_utilsr   utilsr   Z
get_loggerr7   loggerr   __all__r   r   r   r6   <module>   s   
 
