o
    ZŽhE  ã                   @   s*   d Z ddlmZ G dd„ deƒZdgZdS )zI-JEPA model configurationé   )ÚPretrainedConfigc                       sD   e Zd ZdZdZ											
					d‡ fdd„	Z‡  ZS )ÚIJepaConfiga#  
    This is the configuration class to store the configuration of a [`IJepaModel`]. It is used to instantiate an IJEPA
    model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
    defaults will yield a similar configuration to that of the I-JEPA
    [facebook/ijepa_vith14_1k](https://huggingface.co/facebook/ijepa_vith14_1k) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        hidden_size (`int`, *optional*, defaults to 768):
            Dimensionality of the encoder layers and the pooler layer.
        num_hidden_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer encoder.
        intermediate_size (`int`, *optional*, defaults to 3072):
            Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
        hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"selu"` and `"gelu_new"` are supported.
        hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        layer_norm_eps (`float`, *optional*, defaults to 1e-12):
            The epsilon used by the layer normalization layers.
        image_size (`int`, *optional*, defaults to 224):
            The size (resolution) of each image.
        patch_size (`int`, *optional*, defaults to 16):
            The size (resolution) of each patch.
        num_channels (`int`, *optional*, defaults to 3):
            The number of input channels.
        qkv_bias (`bool`, *optional*, defaults to `True`):
            Whether to add a bias to the queries, keys and values.
        pooler_output_size (`int`, *optional*):
           Dimensionality of the pooler layer. If None, defaults to `hidden_size`.
        pooler_act (`str`, *optional*, defaults to `"tanh"`):
           The activation function to be used by the pooler. Keys of ACT2FN are supported for Flax and
           Pytorch, and elements of https://www.tensorflow.org/api_docs/python/tf/keras/activations are
           supported for Tensorflow.

    Example:

    ```python
    >>> from transformers import IJepaConfig, IJepaModel

    >>> # Initializing a IJEPA ijepa-base-patch16-224 style configuration
    >>> configuration = IJepaConfig()

    >>> # Initializing a model (with random weights) from the ijepa-base-patch16-224 style configuration
    >>> model = IJepaModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```Zijepaé   é   é   Úgeluç        ç{®Gáz”?çê-™—q=éà   é   r   TNÚtanhc                    sx   t ƒ jdi |¤Ž || _|| _|| _|| _|| _|| _|| _|| _	|	| _
|
| _|| _|| _|| _|r4|n|| _|| _d S )N© )ÚsuperÚ__init__Úhidden_sizeÚnum_hidden_layersÚnum_attention_headsÚintermediate_sizeÚ
hidden_actÚhidden_dropout_probÚattention_probs_dropout_probÚinitializer_rangeÚlayer_norm_epsÚ
image_sizeÚ
patch_sizeÚnum_channelsÚqkv_biasÚpooler_output_sizeÚ
pooler_act)Úselfr   r   r   r   r   r   r   r   r   r   r   r   r   r   r   Úkwargs©Ú	__class__r   ú\/var/www/auris/lib/python3.10/site-packages/transformers/models/ijepa/configuration_ijepa.pyr   S   s    
zIJepaConfig.__init__)r   r   r   r   r   r   r   r	   r
   r   r   r   TNr   )Ú__name__Ú
__module__Ú__qualname__Ú__doc__Z
model_typer   Ú__classcell__r   r   r"   r$   r      s&    <ðr   N)r(   Zconfiguration_utilsr   r   Ú__all__r   r   r   r$   Ú<module>   s   
e