o
    Zh&                     @   sL   d Z ddlmZ ddlmZ ddlmZ eeZ	G dd deZ
dgZdS )	zFuyu model configuration   )PretrainedConfig)logging   )CONFIG_MAPPINGc                       sd   e Zd ZdZdZdgZ									
																d fdd	Zdd Z  ZS )
FuyuConfiga  
    This is the configuration class to store the configuration of a [`FuyuForCausalLM`]. It is used to instantiate an
    Fuyu model according to the specified arguments, defining the model architecture. Instantiating a configuration
    with the defaults will yield a similar configuration to that of the
    [adept/fuyu-8b](https://huggingface.co/adept/fuyu-8b).

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        vocab_size (`int`, *optional*, defaults to 262144):
            Vocabulary size of the Fuyu model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`FuyuForCausalLM`]
        hidden_size (`int`, *optional*, defaults to 4096):
            Dimension of the hidden representations.
        intermediate_size (`int`, *optional*, defaults to 16384):
            Dimension of the MLP representations.
        num_hidden_layers (`int`, *optional*, defaults to 36):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 64):
            Number of attention heads for each attention layer in the Transformer encoder.
        hidden_act (`str` or `function`, *optional*, defaults to `"relu2"`):
            The non-linear activation function (function or string) in the decoder.
        max_position_embeddings (`int`, *optional*, defaults to 16384):
            The maximum sequence length that this model might ever be used with.
        image_size (`int`, *optional*, defaults to 300):
            The input image size.
        patch_size (`int`, *optional*, defaults to 30):
            The input vision transformer encoding patch size.
        num_channels (`int`, *optional*, defaults to 3):
            The input image number of channels.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        layer_norm_eps (`float`, *optional*, defaults to 1e-05):
            The epsilon used by the rms normalization layers.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models). Only
            relevant if `config.is_decoder=True`. Whether to tie weight embeddings
        tie_word_embeddings (`bool`, *optional*, defaults to `False`):
            Whether to tie input and output embeddings.
        rope_theta (`float`, *optional*, defaults to 25000.0):
            The base period of the RoPE embeddings.
        rope_scaling (`Dict`, *optional*):
            Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
            strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
            `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
            `max_position_embeddings` to the expected new maximum. See the following thread for more information on how
            these scaling strategies behave:
            https://www.reddit.com/r/LocalFuyu/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
            experimental feature, subject to breaking API changes in future versions.
        qk_layernorm (`bool`, *optional*, defaults to `True`):
            Whether or not to normalize the Queries and Keys after projecting the hidden states
        hidden_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio after applying the MLP to the hidden states.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio after computing the attention scores.
        partial_rotary_factor (`float`, *optional*, defaults to 0.5):
            Percentage of the query and keys which will have rotary embedding.

        pad_token_id (`int`, *optional*):
            The id of the *padding* token.
        bos_token_id (`int`, *optional*, defaults to 1):
            The id of the *beginning-of-sequence* token.
        eos_token_id (`Union[int, List[int]]`, *optional*, defaults to 2):
            The id of the *end-of-sequence* token. Optionally, use a list to set multiple *end-of-sequence* tokens.
        text_config (`dict`, *optional*):
            Dictionary of configuration options used to initialize the `language``[`Aut`].

    ```python
    >>> from transformers import FuyuConfig

    >>> # Initializing a Fuyu fuyu-7b style configuration
    >>> configuration = FuyuConfig()
    ```ZfuyuZpast_key_values       @  $   @   relu2,     r   {Gz?h㈵>TF     j@N              ?   r   c                    sJ  |d u rDi d|d|d|d|d|d|d|d|d	|d
|d|d|d|d|d|d|d||||d}t d d|v rL|d nd}t| di || _|| _|| _|| _|	| _|
| _|| _	|| _
|| _|| _|| _|| _|| _|| _|| _|| _|| _|| _|| _|| _|   t jd||||d| d S )N
vocab_sizemax_position_embeddingshidden_sizeintermediate_sizenum_hidden_layersnum_attention_heads
hidden_actinitializer_rangelayer_norm_eps	use_cache
rope_thetarope_scalingqk_layernormhidden_dropoutattention_dropoutpartial_rotary_factorpad_token_id)bos_token_ideos_token_idtie_word_embeddingszEtext_config is None. initializing the text model with default values.
model_typeZ	persimmon)r%   r&   r'   r(    )loggerinfor   text_configZ_vocab_sizer   
image_size
patch_sizenum_channelsr   r   r   r   r   r   r   r   r   r    r!   r"   r#   r$   _rope_scaling_validationsuper__init__)selfr   r   r   r   r   r   r   r.   r/   r0   r   r   r   r(   r   r    r!   r"   r#   r$   r%   r&   r'   r-   kwargsZtext_model_type	__class__r*   Z/var/www/auris/lib/python3.10/site-packages/transformers/models/fuyu/configuration_fuyu.pyr3   i   s   	


zFuyuConfig.__init__c                 C   s   | j du rdS t| j trt| j dkrtd| j  | j dd}| j dd}|du s2|dvr9td| |du sFt|trF|dkrMtd	| dS )
z<
        Validate the `rope_scaling` configuration.
        Nr   zN`rope_scaling` must be a dictionary with two fields, `type` and `factor`, got typefactor)ZlinearZdynamiczF`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got g      ?z7`rope_scaling`'s factor field must be a float > 1, got )r    
isinstancedictlen
ValueErrorgetfloat)r4   Zrope_scaling_typeZrope_scaling_factorr*   r*   r8   r1      s   

z#FuyuConfig._rope_scaling_validation)r   r   r	   r
   r   r   r	   r   r   r   r   r   TFr   NTr   r   r   Nr   r   N)	__name__
__module____qualname____doc__r)   Zkeys_to_ignore_at_inferencer3   r1   __classcell__r*   r*   r6   r8   r      s<    LTr   N)rD   Zconfiguration_utilsr   utilsr   autor   Z
get_loggerrA   r+   r   __all__r*   r*   r*   r8   <module>   s   
 
: