o
    ZhQ%                     @   s   d Z ddlmZ ddlmZmZmZmZ ddlm	Z	m
Z
mZ ddlmZ ddlmZmZ ddlmZ eeZG d	d
 d
eZG dd deZd
dgZdS )zCodeGen model configuration    )OrderedDict)AnyListMappingOptional   )PreTrainedTokenizer
TensorTypeis_torch_available)PretrainedConfig)OnnxConfigWithPastPatchingSpec)loggingc                       sX   e Zd ZdZdZdddddZ						
														d fdd	Z  ZS )CodeGenConfiga  
    This is the configuration class to store the configuration of a [`CodeGenModel`]. It is used to instantiate a
    CodeGen model according to the specified arguments, defining the model architecture. Instantiating a configuration
    with the defaults will yield a similar configuration to that of the CodeGen
    [Salesforce/codegen-2B-mono](https://huggingface.co/Salesforce/codegen-2B-mono) architecture. Configuration objects
    inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from
    [`PretrainedConfig`] for more information.

    Args:
        vocab_size (`int`, *optional*, defaults to 50400):
            Vocabulary size of the CodeGen model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`CodeGenModel`].
        n_positions (`int`, *optional*, defaults to 2048):
            The maximum sequence length that this model might ever be used with. Typically set this to something large
            just in case (e.g., 512 or 1024 or 2048).
        n_ctx (`int`, *optional*, defaults to 2048):
            This attribute is used in `CodeGenModel.__init__` without any real effect.
        n_embd (`int`, *optional*, defaults to 4096):
            Dimensionality of the embeddings and hidden states.
        n_layer (`int`, *optional*, defaults to 28):
            Number of hidden layers in the Transformer encoder.
        n_head (`int`, *optional*, defaults to 16):
            Number of attention heads for each attention layer in the Transformer encoder.
        rotary_dim (`int`, *optional*, defaults to 64):
            Number of dimensions in the embedding that Rotary Position Embedding is applied to.
        n_inner (`int`, *optional*):
            Dimensionality of the inner feed-forward layers. `None` will set it to 4 times n_embd
        activation_function (`str`, *optional*, defaults to `"gelu_new"`):
            Activation function, to be selected in the list `["relu", "silu", "gelu", "tanh", "gelu_new"]`.
        resid_pdrop (`float`, *optional*, defaults to 0.0):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        embd_pdrop (`int`, *optional*, defaults to 0.0):
            The dropout ratio for the embeddings.
        attn_pdrop (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention.
        layer_norm_epsilon (`float`, *optional*, defaults to 1e-05):
            The epsilon to use in the layer normalization layers.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models).
        bos_token_id (`int`, *optional*, defaults to 50256):
            Beginning of stream token id.
        eos_token_id (`int`, *optional*, defaults to 50256):
            End of stream token id.
        tie_word_embeddings (`bool`, *optional*, defaults to `False`):
            Whether the model's input and output word embeddings should be tied. Note that this is only relevant if the
            model has a output word embedding layer.

    Example:

    ```python
    >>> from transformers import CodeGenConfig, CodeGenModel

    >>> # Initializing a CodeGen 6B configuration
    >>> configuration = CodeGenConfig()

    >>> # Initializing a model (with random weights) from the configuration
    >>> model = CodeGenModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```Zcodegenn_positionsn_embdn_headn_layer)Zmax_position_embeddingshidden_sizenum_attention_headsZnum_hidden_layers              @   Ngelu_new        h㈵>{Gz?TP  Fc                    s   || _ || _|| _|| _|| _|| _|| _|| _|	| _|
| _	|| _
|| _|| _|| _|| _|| _|| _t jd|||d| d S )N)bos_token_ideos_token_idtie_word_embeddings )
vocab_sizen_ctxr   r   r   r   n_inner
rotary_dimactivation_functionresid_pdrop
embd_pdrop
attn_pdroplayer_norm_epsiloninitializer_range	use_cacher!   r"   super__init__)selfr%   r   r&   r   r   r   r(   r'   r)   r*   r+   r,   r-   r.   r/   r!   r"   r#   kwargs	__class__r$   `/var/www/auris/lib/python3.10/site-packages/transformers/models/codegen/configuration_codegen.pyr1   f   s,   
zCodeGenConfig.__init__)r   r   r   r   r   r   r   Nr   r   r   r   r   r   Tr    r    F)__name__
__module____qualname____doc__Z
model_typeZattribute_mapr1   __classcell__r$   r$   r4   r6   r      s6    @	r   c                       s   e Zd Z			ddededeee  def fdd	Z	e
d
eeeeef f fddZe
d
efddZe
d
efddZ				ddededededee d
eeef f fddZe
d
efddZ  ZS )CodeGenOnnxConfigdefaultNFconfigtaskpatching_specsuse_pastc                    s2   t  j||||d t| jdd sd| j_d S d S )N)r?   r@   rA   pad_token_idr   )r0   r1   getattr_configrB   )r2   r>   r?   r@   rA   r4   r$   r6   r1      s   zCodeGenOnnxConfig.__init__returnc                 C   sJ   t ddddi}| jr| j|dd ddd|d< |S ddd|d< |S )	N	input_idsbatchsequence)r      inputs)	directionzpast_sequence + sequenceattention_mask)r   rA   Zfill_with_past_key_values_)r2   common_inputsr$   r$   r6   rJ      s   zCodeGenOnnxConfig.inputsc                 C      | j jS N)rD   r   r2   r$   r$   r6   
num_layers      zCodeGenOnnxConfig.num_layersc                 C   rN   rO   )rD   r   rP   r$   r$   r6   r      rR   z%CodeGenOnnxConfig.num_attention_heads	tokenizer
batch_size
seq_lengthis_pair	frameworkc                    s   t t| j|||||d}td|d i}| jrIt stddd l|d j\}}	|	d }
|| j	|
| j
j| j	 f  fddt| jD |d< |d	 |d	< | jrj|d	 j}j|d	 j||
|d
gdd|d	< |S )N)rU   rV   rW   rX   rF   zACannot generate dummy past_keys inputs without PyTorch installed.r      c                    s    g | ]}    fqS r$   )Zzeros).0_Z
past_shapetorchr$   r6   
<listcomp>   s    z;CodeGenOnnxConfig.generate_dummy_inputs.<locals>.<listcomp>Zpast_key_valuesrL   )dtyperI   )dim)r0   r   generate_dummy_inputsr   rA   r
   
ValueErrorr]   shaper   rD   r   rangerQ   r_   catZones)r2   rT   rU   rV   rW   rX   rM   Zordered_inputsrG   ZseqlenZpast_key_values_lengthZ
mask_dtyper4   r\   r6   ra      s2   




z'CodeGenOnnxConfig.generate_dummy_inputsc                 C   s   dS )N   r$   rP   r$   r$   r6   default_onnx_opset   s   z$CodeGenOnnxConfig.default_onnx_opset)r=   NF)rS   rS   FN)r7   r8   r9   r   strr   r   r   boolr1   propertyr   intrJ   rQ   r   r   r	   r   ra   rg   r;   r$   r$   r4   r6   r<      sL    
 

,r<   N)r:   collectionsr   typingr   r   r   r    r   r	   r
   Zconfiguration_utilsr   Zonnxr   r   utilsr   Z
get_loggerr7   loggerr   r<   __all__r$   r$   r$   r6   <module>   s   
xQ