o
    Zh"                     @   s   d Z ddlmZmZmZ ddlmZ ddlmZ ddl	m
Z
mZmZmZmZ ddlmZmZ G dd	 d	ed
dZG dd de
d
dZG dd deZdgZdS )z 
Processor class for Chameleon.
    )ListOptionalUnion   )BatchFeature)
ImageInput)ProcessingKwargsProcessorMixin
TextKwargsUnpack!_validate_images_text_input_order)PreTokenizedInput	TextInputc                   @   s   e Zd ZU eed< dS )ChameleonTextKwargsreturn_for_text_completionN)__name__
__module____qualname__bool__annotations__ r   r   a/var/www/auris/lib/python3.10/site-packages/transformers/models/chameleon/processing_chameleon.pyr      s   
 r   F)totalc                   @   s*   e Zd ZU eed< dddddidZdS )ChameleonProcessorKwargstext_kwargsF)paddingr   return_tensorspt)r   Zcommon_kwargsN)r   r   r   r   r   	_defaultsr   r   r   r   r      s   
 
r   c                       s   e Zd ZdZddgZdZddgZdZddede	f fd
dZ
				ddee deeeeee ee f  dee defddZdd Zdd Zedd Z  ZS )ChameleonProcessora/  
    Constructs a Chameleon processor which wraps a Chameleon image processor and a Chameleon tokenizer into a single
    processor.

    [`ChameleonProcessor`] offers all the functionalities of [`ChameleonImageProcessor`] and [`LlamaTokenizerFast`].
    See the [`~ChameleonProcessor.__call__`] and [`~ChameleonProcessor.decode`] for more information.

    Args:
        image_processor ([`ChameleonImageProcessor`]):
            The image processor is a required input.
        tokenizer ([`LlamaTokenizerFast`]):
            The tokenizer is a required input.
        image_seq_length (`int`, *optional*, defaults to 1024):
            Sequence length of one image embedding.
        image_token (`str`, *optional*, defaults to `"<image>"`):
            The special token used to indicate image in the text.
    image_processor	tokenizer)ZLlamaTokenizerZLlamaTokenizerFastimage_seq_lengthimage_tokenZChameleonImageProcessor   <image>c                    sh   || _ t|dr|jn|| _|| j| _t|dr|jnd| _t|dr(|jnd| _t	 
|| d S )Nr#   	boi_tokenz<racm3:break>	eoi_tokenz<eoss>)r"   hasattrr#   Zconvert_tokens_to_idsZimage_token_idr&   image_start_tokenr'   image_end_tokensuper__init__)selfr    r!   r"   r#   	__class__r   r   r,   D   s   zChameleonProcessor.__init__Nimagestextkwargsreturnc                 K   s:  t ||\}}t|tr|g}nt|ts t|d ts td|du r,|du r,td| jtfd| jj	i|}|d 
dd}g }| j| j| j  | j }	|D ]}
|
| j|	}
|sb|
| jj7 }
||
 qQ|d 
d	d}| j|fi |d }| j||d
gd |dur| j|fi |d d |d< t||dS )a  
        Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
        and `kwargs` arguments to LlamaTokenizerFast's [`~LlamaTokenizerFast.__call__`] if `text` is not `None` to encode
        the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
        CLIPImageProcessor's [`~CLIPImageProcessor.__call__`] if `images` is not `None`. Please refer to the docstring
        of the above two methods for more information.

        Args:
            images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
                The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
                tensor. Both channels-first and channels-last formats are supported.
            text (`str`, `List[str]`, `List[List[str]]`):
                The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
                (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
                `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
            return_tensors (`str` or [`~utils.TensorType`], *optional*):
                If set, will return tensors of a particular framework. Acceptable values are:

                - `'tf'`: Return TensorFlow `tf.constant` objects.
                - `'pt'`: Return PyTorch `torch.Tensor` objects.
                - `'np'`: Return NumPy `np.ndarray` objects.
                - `'jax'`: Return JAX `jnp.ndarray` objects.

        Returns:
            [`BatchFeature`]: A [`BatchFeature`] with the following fields:

            - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
            - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
              `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
              `None`).
            - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
        r   zAInvalid input text. Please provide a string, or a list of stringsNz&You must provide either text or imagesZtokenizer_init_kwargsr   r   Fr   image)Z
modalitiesZimages_kwargsZpixel_values)dataZtensor_type)r   
isinstancestrlist	TypeError
ValueErrorZ_merge_kwargsr   r!   Zinit_kwargspopr)   r#   r"   r*   replaceZ	sep_tokenappendZ_check_special_mm_tokensr    r   )r-   r0   r1   ZaudioZvideosr2   Zoutput_kwargsr   Zprompt_stringsZone_img_tokenssampler   r5   r   r   r   __call__O   s8   )
zChameleonProcessor.__call__c                 O      | j j|i |S )z
        This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
        refer to the docstring of this method for more information.
        )r!   batch_decoder-   argsr2   r   r   r   rA         zChameleonProcessor.batch_decodec                 O   r@   )z
        This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
        the docstring of this method for more information.
        )r!   decoderB   r   r   r   rE      rD   zChameleonProcessor.decodec                 C   s"   | j j}| jj}tt|| S )N)r!   model_input_namesr    r8   dictfromkeys)r-   Ztokenizer_input_namesZimage_processor_input_namesr   r   r   rF      s   z$ChameleonProcessor.model_input_names)r$   r%   )NNNN)r   r   r   __doc__
attributesZtokenizer_classZvalid_kwargsZimage_processor_classintr7   r,   r   r   r   r   r   r   r   r   r   r?   rA   rE   propertyrF   __classcell__r   r   r.   r   r   ,   s0    
Kr   N)rI   typingr   r   r   Zfeature_extraction_utilsr   Zimage_utilsr   Zprocessing_utilsr   r	   r
   r   r   Ztokenization_utils_baser   r   r   r   r   __all__r   r   r   r   <module>   s    
