o
    wZhSf                  &   @   s  d Z ddlmZmZmZ ddlZddlmZ ddlmZm	Z	m
Z
mZmZmZmZmZmZmZmZmZmZmZmZ ddgZG d	d deZd
de de de de de
 d e_ dee dee dee dee dee dee dededededededededededef"d d!Zdee dee dee dee dee dee dededededededededededef"d"d#Zeed$	%		%	%	%	%d(dee dee dee dee dee dee ded&ee dedededededededededef$d'dZdS ))z'Implementation for the NAdam algorithm.    )castOptionalUnionN)Tensor   )_capturable_doc_default_to_fused_or_foreach_differentiable_doc_disable_dynamo_if_unsupported_foreach_doc!_get_capturable_supported_devices_get_scalar_dtype
_get_value_maximize_doc_params_doc_stack_if_compiling_use_grad_for_differentiable_view_as_real	OptimizerParamsTNAdamnadamc                       s   e Zd Z						ddddddd	ed
eeef deeef dedededede	e dededef fddZ
 fddZdd ZedddZ  ZS )r   Mb`?g?g+?:0yE>r   Mbp?FN)foreachmaximize
capturabledifferentiableparamslrbetasepsweight_decaymomentum_decaydecoupled_weight_decayr   r   r   r   c                   s   t |tr| dkrtdd|kstd| d|ks%td| d|d   kr1dk s;n td|d  d|d   krGdk sQn td	|d  d|ks\td
| d|ksgtd| t|||||||	||
|d
}t || d S )Nr   zTensor lr must be 1-element        zInvalid learning rate: zInvalid epsilon value: r         ?z#Invalid beta parameter at index 0: z#Invalid beta parameter at index 1: zInvalid weight_decay value: zInvalid momentum_decay value: )
r!   r"   r#   r$   r%   r&   r   r   r   r   )
isinstancer   Znumel
ValueErrordictsuper__init__)selfr    r!   r"   r#   r$   r%   r&   r   r   r   r   defaults	__class__ @/var/www/auris/lib/python3.10/site-packages/torch/optim/nadam.pyr-      s6   zNAdam.__init__c                    s  t  | | jD ]|}|dd |dd  |dd |dd |dd |d D ]W}| j|g }t|dkrt|d	 sat	|d	 }|d rWtj
|t |jd
ntj
|t d|d	< t|d s|d }|d rztj
|t |jd
ntj
|t d|d< q-q	d S )Nr   Fr   r   r   r&   r    r   stepdtypedevicer6   
mu_product)r,   __setstate__param_groups
setdefaultstategetlentorchZ	is_tensorfloattensorr   r7   )r.   r=   grouppZp_stateZstep_valZmu_prod_valr0   r2   r3   r:   J   s:   


zNAdam.__setstate__c                 C   s*  d}|d D ]}	|	j d ur|t|	O }||	 |	j jr!td||	j  | j|	 }
t|
dkrv|d r@tjdt	 |	j
dntjdt	 d	|
d
< |d rXtjdt	 |	j
dntjdt	 d	|
d< tj|	tjd|
d< tj|	tjd|
d< ||
d  ||
d  ||
d  ||
d
  q|S )NFr    z'NAdam does not support sparse gradientsr   r   r2   r5   r'   r8   r4   r(   r9   )Zmemory_formatexp_avg
exp_avg_sq)gradr@   
is_complexappendZ	is_sparseRuntimeErrorr=   r?   Zzerosr   r7   rB   ZonesZ
zeros_likeZpreserve_format)r.   rC   params_with_gradgradsexp_avgsexp_avg_sqsmu_productsstate_stepshas_complexrD   r=   r2   r2   r3   _init_grouph   s<   





zNAdam._init_groupc                 C   s   |    d}|dur!t  | }W d   n1 sw   Y  | jD ]N}g }g }g }g }g }g }	ttttf |d \}
}| |||||||	}t||||||	|
||d |d |d |d |d |d |d	 |d
 |d |d q$|S )zPerform a single optimization step.

        Args:
            closure (Callable, optional): A closure that reevaluates the model
                and returns the loss.
        Nr"   r!   r$   r%   r#   r   r&   r   r   r   )beta1beta2r!   r$   r%   r#   r   r&   r   r   r   rQ   )	Z _cuda_graph_capture_health_checkr@   Zenable_gradr;   r   tuplerA   rR   r   )r.   closureZlossrC   rK   rL   rM   rN   rO   rP   rS   rT   rQ   r2   r2   r3   r4      sX   


z
NAdam.step)r   r   r   r   r   FN)__name__
__module____qualname__r   r   rA   r   rU   boolr   r-   r:   rR   r   r4   __classcell__r2   r2   r0   r3   r      sN    



+2a  Implements NAdam algorithm.

    .. math::
       \begin{aligned}
            &\rule{110mm}{0.4pt}                                                                 \\
            &\textbf{input}      : \gamma_t \text{ (lr)}, \: \beta_1,\beta_2 \text{ (betas)},
                \: \theta_0 \text{ (params)}, \: f(\theta) \text{ (objective)}                   \\
            &\hspace{13mm} \: \lambda \text{ (weight decay)}, \:\psi \text{ (momentum decay)}    \\
            &\hspace{13mm} \: \textit{decoupled\_weight\_decay}, \:\textit{maximize}             \\
            &\textbf{initialize} :  m_0 \leftarrow 0 \text{ ( first moment)},
                v_0 \leftarrow 0 \text{ ( second moment)}                                 \\[-1.ex]
            &\rule{110mm}{0.4pt}                                                                 \\
            &\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do}                         \\
            &\hspace{5mm}\textbf{if} \: \textit{maximize}:                                       \\
            &\hspace{10mm}g_t           \leftarrow   -\nabla_{\theta} f_t (\theta_{t-1})         \\
            &\hspace{5mm}\textbf{else}                                                           \\
            &\hspace{10mm}g_t           \leftarrow   \nabla_{\theta} f_t (\theta_{t-1})          \\
            &\hspace{5mm} \theta_t \leftarrow \theta_{t-1}                                       \\
            &\hspace{5mm} \textbf{if} \: \lambda \neq 0                                          \\
            &\hspace{10mm}\textbf{if} \: \textit{decoupled\_weight\_decay}                       \\
            &\hspace{15mm} \theta_t \leftarrow \theta_{t-1} - \gamma \lambda \theta_{t-1}                    \\
            &\hspace{10mm}\textbf{else}                                                          \\
            &\hspace{15mm} g_t \leftarrow g_t + \lambda \theta_{t-1}                             \\
            &\hspace{5mm} \mu_t \leftarrow \beta_1 \big(1 - \frac{1}{2}  0.96^{t \psi} \big)     \\
            &\hspace{5mm} \mu_{t+1} \leftarrow \beta_1 \big(1 - \frac{1}{2} 0.96^{(t+1)\psi}\big)\\
            &\hspace{5mm}m_t           \leftarrow   \beta_1 m_{t-1} + (1 - \beta_1) g_t          \\
            &\hspace{5mm}v_t           \leftarrow   \beta_2 v_{t-1} + (1-\beta_2) g^2_t          \\
            &\hspace{5mm}\widehat{m_t} \leftarrow \mu_{t+1} m_t/(1-\prod_{i=1}^{t+1}\mu_i)\\[-1.ex]
            & \hspace{11mm} + (1-\mu_t) g_t /(1-\prod_{i=1}^{t} \mu_{i})                         \\
            &\hspace{5mm}\widehat{v_t} \leftarrow   v_t/\big(1-\beta_2^t \big)                   \\
            &\hspace{5mm}\theta_t \leftarrow \theta_t - \gamma \widehat{m_t}/
                \big(\sqrt{\widehat{v_t}} + \epsilon \big)                                       \\
            &\rule{110mm}{0.4pt}                                                          \\[-1.ex]
            &\bf{return} \:  \theta_t                                                     \\[-1.ex]
            &\rule{110mm}{0.4pt}                                                          \\[-1.ex]
       \end{aligned}

    For further details regarding the algorithm we refer to `Incorporating Nesterov Momentum into Adam`_.
    z
    Args:
        a  
        lr (float, Tensor, optional): learning rate (default: 2e-3)
        betas (Tuple[float, float], optional): coefficients used for computing
            running averages of gradient and its square (default: (0.9, 0.999))
        eps (float, optional): term added to the denominator to improve
            numerical stability (default: 1e-8)
        weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
        momentum_decay (float, optional): momentum momentum_decay (default: 4e-3)
        decoupled_weight_decay (bool, optional): whether to decouple the weight
            decay as in AdamW to obtain NAdamW. If True, the algorithm does not
            accumulate weight decay in the momentum nor variance. (default: False)
        z	
        z

    .. _Incorporating Nesterov Momentum into Adam:
        https://openreview.net/forum?id=OM0jvwB8jIp57ZJjtNEZ
    .. _Decoupled Weight Decay Regularization:
        https://arxiv.org/abs/1711.05101

    r    rL   rM   rN   rO   rP   rS   rT   r!   r$   r%   r#   r&   r   r   r   rQ   c                C   sZ  t | D ]%\}}|s|| n||  }|| }|| }|| }|| }t|r=t|}t|}t|}t|}tj sg|rgt }|jj|jj  krW|jjkr_n n|jj|v sgJ d| d|d7 }|rp|}nt	|}d||  }|	dkr|r|
d||	   n|j||	d}|ddd||
     }|ddd|d |
     }||9 }||d|  |
|j||d| d	 || }|s|r||}|| }|| d|  d|   }|| | d|   }||| ||| qt	|| }|| |j||| d|  dt	|  d	 |j||| | d|  d	 qd S )
NzVIf capturable=True, params, mu_products and state_steps must be on supported devices: .r   r   alphar(         ?Q?)value)	enumerater@   rH   Zview_as_realcompileris_compilingr   r7   typer   Zmul_addZlerp_Zaddcmul_divsqrtZaddcdiv_Zadd_)r    rL   rM   rN   rO   rP   rS   rT   r!   r$   r%   r#   r&   r   r   r   rQ   iparamrG   rE   rF   r9   Zstep_tcapturable_supported_devicesr4   Zbias_correction2mumu_nextdenomZmu_product_nextr2   r2   r3   _single_tensor_nadam  sd   




$

rp   c          (         s  t | dkrd S |rJ dtj s1|r1tddtfddt| ||D s1J d dt| |||||g}|	 D ]\\}}}}}}}t
tt |}t
tt |}t
tt |}t
tt |}t
tt |}t
tt |}|r~t|||| |rt|}tj s|d jrtj|tjd	d
dd	d nt|d |	dkr|rt|d|	   n|rtj|||	d ntj|||	d}t||d   t| t|||d  t|}|r<t|} td| }!t|!d t|!d	 t|!  t|  td| }"t|"d t|"d	 t|"  ~ t|}#t|#d	 t|# t|# nfdd|D }# fdd|D }! fdd|D }"t||! t||# t|| ~#|rt|!d	 t|! t|d	}$t|$ t|!|$ |!}%~$t||"}$t|" t|$d	 t|"|$ |"}&~$t|%|}'t|'|&| t||'| q@tfddt||!D }%tfddt||"D }&t||||% t||||& q@d S )Nr   z#_foreach ops don't support autogradF)Zsupports_xlac                 3   sF    | ]\}}}|j j|j j  ko|j jkn  o|j j v V  qd S rW   )r7   rf   ).0rD   mpr4   )rl   r2   r3   	<genexpr>  s    $

z&_multi_tensor_nadam.<locals>.<genexpr>zWIf capturable=True, params, mu_products, and state_steps must be on supported devices: r]   r(   cpu)r7   r^   r   ra   g      c                    s    g | ]}d  t |  d qS )r   r`   r   rq   r4   )rT   r2   r3   
<listcomp>  s    z'_multi_tensor_nadam.<locals>.<listcomp>c                    s(   g | ]} d ddt |     qS )r(   r`   ra   ru   rv   rS   r%   r2   r3   rw     s    c                    s,   g | ]} d ddt |d      qS )r(   r`   ra   r   ru   rv   rx   r2   r3   rw     s    c                    s0   g | ]\}}t  d |  d t |  d qS r(   ru   )rq   r9   rm   r!   r2   r3   rw   +  s    c                    s0   g | ]\}}t  | d t ||   d qS ry   ru   )rq   r9   rn   r{   r2   r3   rw   1  s    ) r?   r@   rd   re   r   allzipr   Z"_group_tensors_by_device_and_dtypevaluesr   listr   r   Z_foreach_negZis_cpuZ_foreach_add_rB   Z_foreach_mul_Z_foreach_addZ_foreach_lerp_Z_foreach_addcmul_Z_foreach_sqrtZ_foreach_mulZ_foreach_powZ_foreach_sub_Z_foreach_neg_Z_foreach_sqrt_Z_foreach_div_Z_foreach_subZ_foreach_addcdiv_r   )(r    rL   rM   rN   rO   rP   rS   rT   r!   r$   r%   r#   r&   r   r   r   rQ   Zgrouped_tensorsZgrouped_params_Zgrouped_grads_Zgrouped_exp_avgs_Zgrouped_exp_avg_sqs_Zgrouped_mu_products_Zgrouped_state_steps__Zgrouped_paramsZgrouped_gradsZgrouped_exp_avgsZgrouped_exp_avg_sqsZgrouped_mu_productsZgrouped_state_stepsZexp_avg_sq_sqrtexponentZmusZmu_nextsZbias_correction_sqrtro   Zstep_size_gradsZstep_size_expavg	numeratorr2   )rS   rT   rl   r!   r%   r3   _multi_tensor_nadamu  s   











 r   )Zsingle_tensor_fnFr   c                C   s   t dd |D stdt dd |D std|du r't| |	dd\}}|r2tj r2td	|r<tj s<t}nt}|| |||||||||||||||	|
d
 dS )zpFunctional API that performs NAdam algorithm computation.

    See :class:`~torch.optim.NAdam` for details.
    c                 s       | ]	}t |tjV  qd S rW   r)   r@   r   rq   tr2   r2   r3   rs   `      znadam.<locals>.<genexpr>zPAPI has changed, `state_steps` argument must contain a list of singleton tensorsc                 s   r   rW   r   r   r2   r2   r3   rs   e  r   zPAPI has changed, `mu_products` argument must contain a list of singleton tensorsNF)Z	use_fusedz6torch.jit.script not supported with foreach optimizers)rS   rT   r!   r$   r%   r   r&   r#   r   r   rQ   )r|   rJ   r   r@   ZjitZis_scriptingr   rp   )r    rL   rM   rN   rO   rP   r&   r   r   r   rQ   r   rS   rT   r!   r$   r%   r#   r   funcr2   r2   r3   r   D  sH   

)FNFFFF)__doc__typingr   r   r   r@   r   Z	optimizerr   r   r	   r
   r   r   r   r   r   r   r   r   r   r   r   __all__r   r   rA   r[   rp   r   r   r2   r2   r2   r3   <module>   s  D 8'C	

^	

 P
	
